
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, DM group meeting, January 15th 2008

CASTOR 2CASTOR 2
Introduction and overviewIntroduction and overview

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline
● CASTOR2 context

– Scope and constraints

– History

● SHIFT, CASTOR 1

– Requirements

● CASTOR 2 architecture overview
– blocks and components

– practical example : lifecycle of get/put requests

– extra components

● Technology choices

– about languages

– UML and the code generation

– DB centric

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline
● CASTOR2 context

– Scope and constraints

– History
● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– practical example : lifecycle of get/put requests

– extra components

● Technology choices

– about languages

– UML and the code generation

– DB centric

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Scope and constraints
● Provide a managed storage service for all physics

data at CERN
– Transparent tape media management
– Automated disk cache management
– Unique global name space

● Assure that CERN can fulfill the Tier-0 and Tier-1
storage requirements for the LHC experiments
– Central Data Recording (CDR)
– Data reconstruction
– Data export to Tier-1 centers

● Strive to meet the CERN Tier-2 requirements
– The exact requirements and scale are unknown but

CASTOR should prove to integrate well with other
services that may be part of an analysis facility

● E.g. xrootd interface requested
● CASTOR2 assumes backend mass-storage

– Not designed to work as a stand-alone disk cache
solution for Tier-2 institutes

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

SHIFT
● Scalable Heterogeneous Integrated FaciliTy

– Started as a project (HOPE) between the OPAL experiment and
the CN division in early 90’s

– Main authors: Jean-Philippe Baud, Fabrizio Cane, Frederic
Hemmer, Eric Jagel, Ashok Kumar, Gordon Lee, Les Robertson,
Ben Segal, Antoine Trannoy

● All user file access on disk. No direct tape access
– The idea of tape staging at CERN dates back to the early 70’s

● Components
– Stager daemon (stgdaemon) managing the disk pool
– Remote Tape Copy (RTCOPY)
– Remote File IO (RFIO)
– Tape allocation and control (tpdaemon)

● Label processing, load, unload, positioning
● Operator interface for manual mounting
● Interface to robotic mounting

– Tape Management System (TMS)
● Logical volume repository

● Users access files by Tape volume (VID) + tape file sequence
number (FSEQ)  flat namespace: stagein –V EK1234 –q 35 …
– The experiments normally had their own catalogue on top (e.g.

FATMEN)

● CERN was awarded the 21st Century Achievement Award by
Computerworld in 2001

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

SHIFT limitations
● Data rate: more than 10MB/s per

stream is difficult to achieve
● Stager catalog does not really scale

over 10,000 files
● SHIFT does not support many

concurrent accesses
● No automatic allocation of tapes
● No easy access to files by name without

an external package
● automatic migration/recall of files is not

available

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Alternative solutions
● Since the mid-90’s CERN had been

looking and testing alternative solutions
to SHIFT
– OSM
– ADSM (now TSM):
– HPSS
– Eurostore

● Only HPSS was run in production for 3
years (1998 – 2001)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

CASTOR1
● Cern Advanced STORage manager

– Project started in 1999 to address the immediate
needs (NA48, Compass) and provide a base that
would scale to meet the LHC requirements

– Managed storage: tapes hidden from the users
– Main authors: Jean-Philippe Baud, Fabien Collin,

Jean-Damien Durand, Olof Bärring
● Components

– Stager daemon enhancements
● Automatic tape migration added

– Remote File IO (RFIO) supports data streaming
– Volume Manager (VMGR) replaces TMS
– Name server (Cns) provides a CASTOR name space
– Tape Volume and Drive Queue service (VDQM)
– Tape repack automated media migration

● Users access file by their CASTOR file names
 stagein –M /castor/cern.ch/user/…

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

CASTOR1 limitations
● Stager catalogue limitations:

– Stager unresponsive beyond 200k disk resident files
● Tape migration/recall not optimal

– Migration streams are statically formed and ordering
among files cannot be changed depending on the
load picture

– Tape recalls request for same tape are not
automatically bundled together

– Large footprint from waiting requests
● No true request scheduling

– Throttling, load-balancing
– Fair-share

● Operational issues
– No unique request identifiers
– Problem tracing difficult

● Stager code had reached a state where it had
become practically un-maintainable
– Based on the >10 years old SHIFT stager with a long

history of patches, hacks and add-ons for CASTOR1

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

CASTOR2
● The original CASTOR plans from 1999 contained a

development of a new stager
– The re-use of the SHIFT stager was temporary

● Project proposed at 2003 CASTOR users’ meeting:
develop a replacement for the CASTOR1 stager
– The CASTOR1 stager had already proved to not

scale to meet LHC requirements
– Authors :

● Originally : Olof Bärring, Ben Couturier, Jean-
Damien Durand, Sebastien Ponce

● Currently : Sebastien Ponce, Giuseppe Lo Presti,
Giulia Taurelli, Rosa Garcia Rioja, Dennis
Waldron, Steven Murray, Maria Isabel Serrano,
Victor Kotlyar,

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

CASTOR2 Proposal

● Pluggable framework rather than total solution
– True request scheduling

● delegate the scheduling to a pluggable scheduler,
possibly using third party sofware

– Policy attributes
● externalize policy engines governing the resource

matchmaking
● Restricted access to storage resources to

achieve predictable load
– No random rfiod eating up the resources behind

the back of the scheduling system
● Disk server autonomy as far as possible

– In charge of local resources: file system selection
and execution of garbage collection

– Loosing a server should not affect the rest of the
system

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline
● CASTOR2 context

– Scope and constraints

– History
● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– practical example : lifecycle of get/put requests

– extra components

● Technology choices

– about languages

– UML and the code generation

– DB centric

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Context View

Experiment
Framework

Storage Interface (SRM)

CASTOR

User

Grid enabled
applications

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Tape archive
subsystem

General Picture

Disk cache
subsystem

Client

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

General Picture
● Key requirements

– Fault tolerance
– Scalability
– Transaction-like behavior

● Design features
– Distributed system
– Stateless replicated daemons
– Database-centric architecture

● State information stored in a RDBMS
● Rely on the DBMS performances in

terms of fault tolerance

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Client deliverables
● Command line interface

– stager commands (stager_xxx)
– RFIO commands (rfxxx)

● Client API
– only C
– internal API in C++

● Supported Protocols
– RFIO: rfio://server:port//castor/cern.ch/...

– ROOT: root://server:port//castor/cern.ch/...

– XROOT: rootd://server:port//castor/cern.ch/...

– GridFTP:

● internal (via SRM) : gsiftp://server:port//castor/cern.ch/...
● external : gsiftp://server:port//local/mnt/point/...

● SRM v1 and v2 interfaces

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Central Services
● NameServer

– Database for the Castor
“FileSystem”

– Stores tape-related info as well
● Volume and Drive Queue Manager (VDQM)

– Daemon for tape queue management
● Volume Manager (VMGR)

– Archive of all tapes available in the libraries
● Castor User Privileges (CUPV)

– Authorization daemon: provides rights to users
and admins for tape related operations

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Stager Logic

● Design principles
– Decisions taken:

● at DB level (stored procedures), or
● by external plugins (scheduler, expert

system)

– Typical decisions
● Preparation of migrationmigration or recallrecall streams
● Weighting of file systems used for

migration/recall
● Garbage collection decisions

– Actions performed by dedicated
daemons

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Stager Architecture
● Database centric architecture

– daemons are stateless
– Well defined database interfaces

separated from the rest of the code
– only Oracle is fully supported

● Stateless components
– can be restarted/parallelized easily

 ⇒ no single point of failure
– Stager split in many independent services

● distinction between queries, user requests and admin requests
● fully scalable

● Minimal footprint of inactive requests
– Requests are not instantiated in terms of processes until

they run
● Stored in DB and/or scheduler while waiting for resources
● Number of migrator / recaller instances ~ nb drives (no process

instances while waiting for drive)

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Disk Cache and Tape Archive
● Scheduled disk access

– All user requests are scheduled
– Advanced scheduling features

for ‘free’ (e.g. fair-share)
– Only LSF is supported

● Maui used to be but development froze last year

● Dynamic migration / recall streams to / from tape
– Multiple concurrent requests for same volume will

be processed together
– New requests arriving after the stream has started

are automatically added to the stream

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Disk Cache and Tape Archive
● Pluggable policies

– For recall, migration,
I/O scheduling, GC

– Defined per disk pool but
centrally written

– Allows support for
● volatile storage (GC, no migration)
● durable storage (no GC, no migration)
● permanent storage (GC, migration)

● “Pluggable” protocols
– RFIO and ROOT internal, XROOT, GridFTP both

internal and external
– “Easy” addition of new protocols

● but no clean interface

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, DM group meeting, January 15th 2008

Security and safety aspects
● Authorization

● per file ACLs at the namespace level
● restricted access to diskservers (rootd, rfio,

xrootd)
● Authentication

● strong authentication under work
● first version available in 2.1.6 to be released now

● Resiliency against hardware failures
● any node can die with no major impact

● relying on the DB for data, all deamons can be
replicated

● Disaster recovery
● regular backups of the DBs

Tape archive
subsystem

Castor 2 Architecture

Disk cache
subsystem

Client

Central servicesStager logic

From the “simple” view …

Castor 2 Architecture

Tape Servers

Ta
p
e
D

a
e
m

o
n

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

Centra
l S

ervices

Centra
l S

ervices

Disk cache subsystem

Disk cache subsystem

Tape archive subsystem

Tape archive subsystem

… to a more detailed one

Stager

Stager

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Old and new components
● Castor 2 has its roots in mid 1990s

– Several components have been left
almost unchanged

● E.g. the Central Services

– New components have been written from
scratch

– Happy mix of old and new code
● Different styles due to different developers

and
(mostly) different languages

● Most C++ code is interfaced in C

…not a surprise taking into account time extension of
the project and number of involved people!

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Lifecycle of a GET + recall

● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and checks for file

availability
● If the file is not available, the recall

process is activated
● Once the file is available, stager asks the

scheduler to schedule the access to the
file

● Client gets a callback and can initiate the
transfer

● The commandline is stager_get

stager_get (1)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

stager_get (2)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

MigHunter

GC

RTCPClientD

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is not available, it creates a DiskCopy
 in WAITTAPERECALL

stager_get (3)

Client

StagerJob

NameServer

RH

RR

Schedu
ler

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
o
v
e
r

RTCPClientD

DB

VMGR

• rtcpClientd polls the DB to get diskCopies in WAITTAPERECALL
• It organizes the recall of the data but the target filesystem is
not yet selected

Tape Servers

Ta
p

e
D

a
e
m

o
n recaller

stager_get (4)

Client

StagerJob

NameServer

Scheduler

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
o
v
e
r

RTCPClientD

DB

VMGR

Tape Servers

Ta
p

e
D

a
e
m

o
n

RH DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

RR

• recaller sends a request to the stager in order to know where to
put the file
• the request goes through the usual way: Request Handler, DB,
 stager (job service), Request Replier

recaller

stager_get (5)

Client

StagerJob

NameServer

VDQM

VMGR

RH

RR

Schedu
ler

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

Tape Servers

Ta
p

e
D

a
e
m

o
n

RTCPD

Disk Servers

Mover

M
o
v
e
r

RTCPClientD

DB

• rtcpd transfers the data from the tape to the selected filesystem
• the DB is updated with the new file size and position
• the original subrequest is set to RESTART status

recaller

stager_get (6)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is available, it calls the scheduler through the
 JobManager to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

Scheduler

stager_get (7)

Tape ServersTa
p

e
D

a
e
m

o
n

RTCPD

NameSer
ver

VDQM

VMGR

RH Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
o
v
e
r

RR

• the StagerJob launches the right mover corresponding to the
client request
(note that the scheduler takes available movers into account)
• it answers to the client, giving to it the machine and port
where to contact the mover
• data is transfered
• DB is updated

DB

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Lifecycle of a PUT + migration

● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and looks for a

candidate filesystem for the transfer
● Client gets a callback and can initiate

the transfer
● After the transfer is completed,

migration to tape is performed

● The commandline is stager_put

stager_put (1)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

stager_put (2)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It calls the scheduler through the JobManager to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

Scheduler

stager_put (3)

Tape ServersTa
p

e
D

a
e
m

o
n

RTCPD

NameServer

VDQM

VMGR

RH Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
o
v
e
r

RR

• the StagerJob launches the right mover (note that the scheduler
takes available movers into account)
• it answers to the client, giving the machine and port where to
contact the mover
• data is transferred
• DB is updated with the file size and the diskcopy is set in
CANBEMIGR and one or many TapeCopies are created

DB

stager_put (4)

Tape Servers

Ta
p

e
D

a
e
m

o
n

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o
v
e
r

RH

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

GC

RTCPClientD

MigHunter

DB

• thanks to a MigHunter, the new tapecopy is attached to the
streams it can belong to (depending on tapepools, svcclasses, ...)

stager_put (5)

Client

StagerJob

NameServer

RH

RR

Schedu
ler

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

DB

VMGR

• rtcpclientd will launch a migrator
• this one asks the DB for the next migration candidate
• the DB takes the best candidate in the stream
 (based on filesystems availability)
• the file is written to tape and the DB updated

Tape ServersTa
p

e
D

a
e
m

o
n

Disk Servers

Mover

M
o
v
e
r

RTCPClientD

migrator

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Extra components
● Monitoring daemons

– rmNodeDaemon runs on all diskservers

– rmMasterDaemon collects the information

● JobManager

– a wrapper around the LSF API
● LSF API is non thread safe

● LSF Plugin

– Select best candidate resource (file system)
among the set proposed by LSF

● Distributed logging facility (DLF)

– a central DB allowing easy log browsing

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

DLF GUI

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Extra components (2)
● Garbage collection

– gcDaemon running on every diskServer

– central SQL code taking garbage collection
decisions based on SQL polices

● Python policy service

– allows easy execution of python policies

– still quite efficient thanks to on the fly
precompilation

– used for recall, stream, migration and
scheduling policies

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline
● CASTOR2 context

– Scope and constraints

– History
● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– practical example : lifecycle of get/put requests

– extra components

● Technology choices

– about languages

– UML and the code generation

– DB centric

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

About languages
● Object Orientation

– Java like inheritance
● Simple, multiple only for interfaces

– Heavy use of (pure) abstract interfaces
● Each service/component has one
● Some services even have several

implementations
– IGCSvc  RemoteGCSvc and OraGCSvc

● Implementation language is C++
– Still some subparts in C
– Happy mix, special thanks to code

generation
● Castor 1 is pure C, no OO

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Still around languages
● Admin scripts are a mix of perl and

python
– New ones in python, future is python

● No imposed dev environment
– Wide range of tools among developpers

● vi(m), (x)emacs
● jedit, kdeveloper
● nedit

– Even different linux distributions
● Documentation

– Recent documents are tex
– Older are more word

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Architecture design
● Based on UML

– Component views for the rough architecture
– Activity diagrams per component
– State diagrams per object
– Sequence diagrams per use case
– Class diagrams for implementation details,

per compenent
● Using umbrello

– Essentially because of its code generation

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Component views
● Used for designing the overall architecture and the

relations between components
● The building block

is a component
● The relations

mean that the
2 components
communicate
at some stage

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Activity diagrams
● Used for

describing
the work
flow of a
component

● The building
block
is a simple
(atomic)
operation

● Arrows indicate
the flow of time

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

State Diagrams
● Used for describing the possible states

and state transitions of objects
● Allows to easily find out implications of

adding a new state or state transition
● Building block

is a state
● Arrows

indicate
state
transitions

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sequence diagrams

Atomic interaction
with the DB

● Used for analyzing interactions between
components and their timing

● Useful to avoid deadlocks and
inefficiencies due to bad granularity

● Blocks are
actions

● Arrows mean
communication
between
components

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Class diagrams
● Used of fine

grained design.
● Blocks are the

items handled by
the code
(mapped to
classes)

● Relations are
links from one
object to
another

● This is the input
of the code
generation

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Usage of UML diagrams
● For the design

– At the project level
– At the code level
– For the database schema

● class diagram maps to the DB schema
● For code generation

– Of header files and object implementation
(data objects)

– Of DB scripts : schema creation/deletion
– Of a DB access layer in the code

● allows to store/retrieve/update/(un)link objects
– Of I/O libraries dealing with objects

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Goal of code generation
● Saves typing for class declaration and

implementation
● Automates some facilities (object printing,

introspection)
● Automates streaming and DB access
● Generates C interface to C++ code
● Allows easy maintenance

castor::IObject* obj = sock->readObject()
…
castor::BaseAddress ad;
ad.setCnvSvcName(“DbCnvSvc”);
…
svcs()->createRep(&ad, obj);

Core of the Request Handler code

Class implementation
class MessageAck : public virtual IObject {
…
private:
 /// Status of the request
 bool m_status;
 /// Code of the error if status shows one
 int m_errorCode;

void castor::MessageAck::print(…) const {
 …
 stream << indent << "status : “
 << m_status << std::endl;
 stream << indent << "errorCode : “
 << m_errorCode << std::endl;

int C_MessageAck_create(struct C_MessageAck_t**);
int C_MessageAck_print(struct C_MessageAck_t*);

int C_MessageAck_create(castor::MessageAck** obj) {
 *obj = new castor::MessageAck();
 return 0;
}
int C_MessageAck_print(castor::MessageAck* instance) {
 instance->print();
 return 0;
}

.hpp

CInt.cpp

.h

.cpp

And C interface

C++ code

Converters

void … StreamMessageAckCnv::createRep(…) {
 …
 ad->stream() << obj->type();
 ad->stream() << obj->ipAddress();
 ad->stream() << obj->port();
 ad->stream() << obj->id();

virtual void createRep(IAddress*, IObject*);
Streaming code

And DB code

void … StreamMessageAckCnv::createRep(…) {
 …
 const std::string insertStmStr =
"INSERT INTO Client (ipAddress, port, id)…";
 …
 insertStmt = createStatement(insertStmStr);
 …
 insertStm->executeUpdate();

virtual void createRep(IAddress*, IObject*);

Stream*Cnv.h/cpp

Ora*Cnv.h/cpp

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

DB scripts

/* SQL statements for type Client */
CREATE TABLE Client (ipAddress NUMBER, port NUMBER, id
INTEGER PRIMARY KEY) INITRANS 50 PCTFREE 50;

/* SQL statements for type Client */
DROP TABLE Client;

castor_oracle_create.sql

castor_oracle_drop.sql

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Database Centric soft
● Reliability

– No single point of failure
● replication of components

– Locking handled by the DB
– Backups handled by the DB

● Scalability
– All component can be replicated
– No catalog in memory
– Limited by DB scalability

● No risk from the space point of view
● CPU is the limit. A lot of tuning done.
● No fear so far, CPU usage in a production

instance running stress testing is ~10%

DB
Stager

RH

LSF plugin

Recall

GC

MigHunter

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Catalogue DB schema
Tape oriented Disk orientedRequest oriented

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Request classes

SvcClass ≈ batch queue. The
SvcClass also names the
CASTOR file management
policies that should be used.

Requestor
information

FileRequests are requests
requiring access to resources:
• stageGet
• stagePut
• stageUpdate
• prepareToXXX

File requests

Each file requested is associated with one or
more SubRequest, which is the working unit of
the new stager

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Disk residence

A given CASTOR file may exist with multiple disk
copies. Allows for loadbalancing the access to
“hot” files. The first write operation on one of
the copies will immediately invalidates all other
copies. The maximum number of replicas can be
specified in the SvcClass

The file systems are monitored by the rmnode
daemon running on the disk servers. The
filesystem selection policy takes the load
monitoring data as input and gives the weight
and fsDeviation as output.

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

That's it for today
What we covered :
● history and requirements
● global architecture
● components and request cycle
● main technology choices

– usage of UML

– Db centric

– code generation

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

That's it for today
What we did not cover (not exhaustive) :
● CASTOR features
● CASTOR users (Tier 0, Tier 1s)
● the tape layer and its specificities
● the castor 2 core framework
● the supported protocols and their interfaces to CASTOR
● scheduling
● building and testing infrastructures
● anatomy of a CASTOR instance
● hardware and network requirements
● operational aspects
● configuration, monitoring
● performances (data challenges)
●

