
1/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

CASTOR TutorialCASTOR Tutorial

Part 1Part 1
Introduction and overviewIntroduction and overview

2/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Outline
● CASTOR2 context

– Scope and constraints

– History

● SHIFT, CASTOR 1

– Requirements

● CASTOR 2 architecture overview
– blocks and components

– and their status

● Technology choices

– about languages

– UML and the code generation

– DB centric

3/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Outline
● CASTOR2 context

– Scope and constraints

– History

● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– and their status

● Technology choices

– about languages

– UML and the code generation

– DB centric

4/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Scope and constraints
● Provide a managed storage service for all physics data at

CERN
– Transparent tape media management
– Automated disk cache management
– Unique global name space

● Assure that CERN can fulfill the Tier-0 and Tier-1 storage
requirements for the LHC experiments
– Central Data Recording (CDR)
– Data reconstruction
– Data export to Tier-1 centers

● Strive to meet the CERN Tier-3 requirements
– The exact requirements and scale are unknown
– CASTOR should support the CERN analysis

● xrootd integration
● CASTOR2 assumes big data stores

– Not designed to work for Tier-2 institutes

5/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

SHIFT
● Scalable Heterogeneous Integrated FaciliTy

– Started as a project (HOPE) between the OPAL experiment and the CN
division in early 90’s

– Main authors: Jean-Philippe Baud, Fabrizio Cane, Frederic Hemmer, Eric
Jagel, Ashok Kumar, Gordon Lee, Les Robertson, Ben Segal, Antoine
Trannoy

● All user file access on disk. No direct tape access
– The idea of tape staging at CERN dates back to the early 70’s

● Components
– Stager daemon (stgdaemon) managing the disk pool
– Remote Tape Copy (RTCOPY)
– Remote File IO (RFIO)
– Tape allocation and control (tpdaemon)

● Label processing, load, unload, positioning
● Operator interface for manual mounting
● Interface to robotic mounting

– Tape Management System (TMS)
● Logical volume repository

● Users access files by Tape volume (VID) + tape file sequence number
(FSEQ)  flat namespace: stagein –V EK1234 –q 35 …
– The experiments normally had their own catalogue on top (e.g. FATMEN)

● CERN was awarded the 21st Century Achievement Award by
Computerworld in 2001

6/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

SHIFT limitations
● Data rate: more than 10MB/s per stream is

difficult to achieve
● Stager catalog does not really scale over

10,000 files
● SHIFT does not support many concurrent

accesses
● No automatic allocation of tapes
● No easy access to files by name without an

external package
● automatic migration/recall of files is not

available

7/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Alternative solutions
● Since the mid-90’s CERN had been looking

and testing alternative solutions to SHIFT
– OSM
– ADSM (now TSM):
– HPSS
– Eurostore

● Only HPSS was run in production for 3 years
(1998 – 2001)

8/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

CASTOR1
● Cern Advanced STORage manager

– Project started in 1999 to address the immediate needs
(NA48, Compass) and provide a base that would scale to
meet the LHC requirements

– Managed storage: tapes hidden from the users
– Main authors: Jean-Philippe Baud, Fabien Collin, Jean-

Damien Durand, Olof Bärring
● Components

– Stager daemon enhancements
● Automatic tape migration added

– Remote File IO (RFIO) supports data streaming
– Volume Manager (VMGR) replaces TMS
– Name server (Cns) provides a CASTOR name space
– Tape Volume and Drive Queue service (VDQM)
– Tape repack automated media migration

● Users access file by their CASTOR file names
 stagein –M /castor/cern.ch/user/…

9/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

CASTOR1 limitations
● Stager catalogue limitations:

– Stager unresponsive beyond 200k disk resident files
● Tape migration/recall not optimal

– Migration streams are statically formed and ordering among
files cannot be changed depending on the load picture

– Tape recalls request for same tape are not automatically
bundled together

– Large footprint from waiting requests
● No true request scheduling

– Throttling, load-balancing
– Fair-share

● Operational issues
– No unique request identifiers
– Problem tracing difficult

● Stager code had reached a state where it had become
practically un-maintainable
– Based on the >10 years old SHIFT stager with a long

history of patches, hacks and add-ons for CASTOR1

10/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

CASTOR2
● The original CASTOR plans from 1999 contained a

development of a new stager
– The re-use of the SHIFT stager was temporary

● Project proposed at 2003 CASTOR users’ meeting:
develop a replacement for the CASTOR1 stager
– The CASTOR1 stager had already proved to not scale to

meet LHC requirements
– Authors :

● Originally : Olof Bärring, Ben Couturier, Jean-Damien
Durand, Sebastien Ponce

● Currently : Sebastien Ponce, Giuseppe Lo Presti, Giulia
Taurelli, Rosa Garcia Rioja, Dennis Waldron, Steven
Murray, Maria Isabel Serrano, Victor Kotlyar,

11/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

CASTOR2 Proposal

● Pluggable framework rather than total solution
– True request scheduling

● delegate the scheduling to a pluggable scheduler,
possibly using third party sofware

– Policy attributes
● externalize policy engines governing the resource

matchmaking
● Restricted access to storage resources to achieve

predictable load
– No random rfiod eating up the resources behind the

back of the scheduling system
● Disk server autonomy as far as possible

– In charge of local resources: file system selection and
execution of garbage collection

– Loosing a server should not affect the rest of the
system

12/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Outline
● CASTOR2 context

– Scope and constraints

– History

● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– and their status

● Technology choices

– about languages

– UML and the code generation

– DB centric

13/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Context View

Experiment
Framework

Storage Interface (SRM)

CASTOR

User

Grid enabled
applications

14/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Tape archive
subsystem

General Picture

Disk cache
subsystem

Client

Central servicesStager logic

15/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

General Picture
● Key requirements

– Fault tolerance
– Scalability
– Transaction-like behavior

● Design features
– Distributed system
– Stateless replicated daemons
– Database-centric architecture

● State information stored in a RDBMS
● Rely on the DBMS performances in terms of

fault tolerance

16/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Client deliverables
● Command line interface

– stager commands (stager_xxx)
– RFIO commands (rfxxx)

● Client API
– only C
– internal API in C++

● Supported Protocols
– RFIO: rfio://server:port//castor/cern.ch/...

– ROOT: root://server:port//castor/cern.ch/...

– XROOT: rootd://server:port//castor/cern.ch/...

– GridFTP:

● internal (via SRM) : gsiftp://server:port//castor/cern.ch/...
● external : gsiftp://server:port//local/mnt/point/...

● SRM v1 and v2 interfaces

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

17/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Central Services
● NameServer

– Database for the Castor
“FileSystem”

– Stores tape-related info as well
● Volume and Drive Queue Manager (VDQM)

– Daemon for tape queue management
● Volume Manager (VMGR)

– Archive of all tapes available in the libraries
● Castor User Privileges (CUPV)

– Authorization daemon: provides rights to users and
admins for tape related operations

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

18/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Stager Logic

● Design principles
– Decisions taken:

● at DB level (stored procedures), or
● by external plugins (scheduler, policies)

– Typical decisions
● Preparation of migrationmigration or recallrecall streams
● Weighting of file systems used for migration/recall
● Garbage collection decisions

– Actions performed by dedicated daemons

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

19/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Stager Architecture
● Database centric architecture

– daemons are stateless
– Well defined database interfaces

separated from the rest of the code
– only Oracle is fully supported

● Stateless components
– can be restarted/parallelized easily

 ⇒ no single point of failure
– Stager split in many independent services

● distinction between queries, user requests and admin requests
● fully scalable

● Minimal footprint of inactive requests
– Requests are not instantiated in terms of processes until they run

● Stored in DB and/or scheduler while waiting for resources
● Number of migrator / recaller instances ~ nb drives (no process

instances while waiting for drive)

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

20/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Disk Cache and Tape Archive
● Mainly scheduled disk access

– All user requests are scheduled
– Advanced scheduling features

for ‘free’ (e.g. fair-share)
– Only LSF is supported

● Maui used to be but development froze last year
● For analysis, unscheduled disk access

– XROOT does the scheduling on the fly
● And throttling in case of concurrent streaming accesses

● Dynamic migration / recall streams to / from tape
– Multiple concurrent requests for same volume will be

processed together
– New requests arriving after the stream has started are

automatically added to the stream

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

21/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Disk Cache and Tape Archive
● Pluggable policies

– For recall, migration,
I/O scheduling, GC

– Defined per disk pool but
centrally written

– Allows support for
● volatile storage (GC, no migration)
● durable storage (no GC, no migration)
● permanent storage (GC, migration)

● “Pluggable” protocols
– RFIO and ROOT internal, XROOT, GridFTP both

internal and external
– “Easy” addition of new protocols

● Via plugin mechanism
● Typically no more than 200 lines of C++

Disk cache
subsystem

Client

Tape archive
subsystem

Central servicesStager logic

22/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Security and safety aspects
● Authorization

● per file ACLs at the namespace level
● restricted access to diskservers (rootd, rfio, xrootd)

● Authentication
● strong authentication under work

● available in 2.1.8 but not yet at production level

● Resiliency against hardware failures
● any node can die with no major impact

● relying on the DB for data, all deamons can be replicated

● Disaster recovery
● regular backups of the DBs

Sebastien Ponce, DM group meeting, January 15th 2008 23/44

Tape archive
subsystem

Castor 2 Architecture

Disk cache
subsystem

Client

Central servicesStager logic

From the “simple” view …

Sebastien Ponce, DM group meeting, January 15th 2008 24/44

Castor 2 Architecture

Tape Servers

Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

JobManager
Scheduler

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

Centra
l S

ervices

Centra
l S

ervices

Disk cache subsystem

Disk cache subsystem

Tape archive subsystem

Tape archive subsystem

… to a more detailed one

Stager

Stager

25/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Old and new components
● Castor 2 has its roots in mid 1990s

– Several components have been left
almost unchanged

● E.g. the Central Services

– New components have been written from scratch
– Happy mix of old and new code

● Different styles due to different developers and
(mostly) different languages

● Most C++ code is interfaced in C

…not a surprise taking into account time extension of the
project and number of involved people!

26/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Extra components
● Monitoring daemons

– rmNodeDaemon runs on all diskservers

– rmMasterDaemon collects the information

● JobManager

– a wrapper around the LSF API
● LSF API is non thread safe

● LSF Plugin

– Select best candidate resource (file system) among the
set proposed by LSF

● Distributed logging facility (DLF)

– a central DB allowing easy log browsing

27/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

DLF GUI

28/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Extra components (2)
● Garbage collection

– gcDaemon running on every diskServer

– central SQL code taking garbage collection
decisions based on SQL polices

● Python policy service

– allows easy execution of python policies

– still quite efficient thanks to on the fly
precompilation

– used for recall, stream, migration, scheduling
policies, ...

29/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Outline
● CASTOR2 context

– Scope and constraints

– History

● SHIFT, CASTOR 1

– Requirements
● CASTOR 2 architecture overview

– blocks and components

– and their status

● Technology choices

– about languages

– UML and the code generation

– DB centric

30/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

About languages
● Object Orientation

– Java like inheritance
● Simple, multiple only for interfaces

– Heavy use of (pure) abstract interfaces
● Each service/component has one
● Some services even have several

implementations
– IGCSvc  RemoteGCSvc and OraGCSvc

● Implementation language is C++
– Still some subparts in C
– Happy mix, special thanks to code generation

● Castor 1 is pure C, no OO

31/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Still around languages
● Admin scripts are in python

– Still some old ones in perl, should disappear
● No imposed dev environment

– Wide range of tools among developpers
● vi(m), (x)emacs
● jedit, kdeveloper
● nedit

– Even different linux distributions
● Documentation

– Recent documents are tex
– Older are more word

32/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Architecture design
● Based on UML

– Component views for the rough architecture
– Activity diagrams per component
– State diagrams per object
– Sequence diagrams per use case
– Class diagrams for implementation details, per

compenent
● Using umbrello

– Essentially because of its code generation

33/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Component views
● Used for designing the overall architecture and the relations

between components
● The building block

is a component
● The relations

mean that the
2 components
communicate
at some stage

34/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Activity diagrams
● Used for

describing
the work
flow of a
component

● The building block
is a simple
(atomic)
operation

● Arrows indicate
the flow of time

35/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

State Diagrams
● Used for describing the possible states and

state transitions of objects
● Allows to easily find out implications of adding a

new state or state transition
● Building block

is a state
● Arrows

indicate
state
transitions

36/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Sequence diagrams

Atomic interaction
with the DB

● Used for analyzing interactions between
components and their timing

● Useful to avoid deadlocks and inefficiencies due
to bad granularity

● Blocks are
actions

● Arrows mean
communication
between
components

37/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Class diagrams
● Used of fine

grained design.
● Blocks are the

items handled by
the code (mapped
to classes)

● Relations are links
from one object to
another

● This is the input
of the code
generation

38/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Usage of UML diagrams
● For the design

– At the project level
– At the code level
– For the database schema

● class diagram maps to the DB schema
● For code generation

– Of header files and object implementation
(data objects)

– Of DB scripts : schema creation/deletion
– Of a DB access layer in the code

● allows to store/retrieve/update/(un)link objects
– Of I/O libraries dealing with objects

39/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Goal of code generation
● Saves typing for class declaration and

implementation
● Automates some facilities (object printing,

introspection)
● Automates streaming and DB access
● Generates C interface to C++ code
● Allows easy maintenance

castor::IObject* obj = sock->readObject()
…
castor::BaseAddress ad;
ad.setCnvSvcName(“DbCnvSvc”);
…
svcs()->createRep(&ad, obj);

Core of the Request Handler code

Sebastien Ponce, DM group meeting, January 15th 2008 40/44

Class implementation
class MessageAck : public virtual IObject {
…
private:
 /// Status of the request
 bool m_status;
 /// Code of the error if status shows one
 int m_errorCode;

void castor::MessageAck::print(…) const {
 …
 stream << indent << "status : “
 << m_status << std::endl;
 stream << indent << "errorCode : “
 << m_errorCode << std::endl;

int C_MessageAck_create(struct C_MessageAck_t**);
int C_MessageAck_print(struct C_MessageAck_t*);

int C_MessageAck_create(castor::MessageAck** obj) {
 *obj = new castor::MessageAck();
 return 0;
}
int C_MessageAck_print(castor::MessageAck* instance) {
 instance->print();
 return 0;
}

.hpp

CInt.cpp

.h

.cpp

And C interface

C++ code

Sebastien Ponce, DM group meeting, January 15th 2008 41/44

Converters

void … StreamMessageAckCnv::createRep(…) {
 …
 ad->stream() << obj->type();
 ad->stream() << obj->ipAddress();
 ad->stream() << obj->port();
 ad->stream() << obj->id();

virtual void createRep(IAddress*, IObject*);
Streaming code

And DB code

void … StreamMessageAckCnv::createRep(…) {
 …
 const std::string insertStmStr =
"INSERT INTO Client (ipAddress, port, id)…";
 …
 insertStmt = createStatement(insertStmStr);
 …
 insertStm->executeUpdate();

virtual void createRep(IAddress*, IObject*);

Stream*Cnv.h/cpp

Ora*Cnv.h/cpp

42/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

DB scripts

/* SQL statements for type Client */
CREATE TABLE Client (ipAddress NUMBER, port NUMBER, id
INTEGER PRIMARY KEY) INITRANS 50 PCTFREE 50;

/* SQL statements for type Client */
DROP TABLE Client;

castor_oracle_create.sql

castor_oracle_drop.sql

43/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

Database Centric soft
● Reliability

– No single point of failure
● replication of components

– Locking handled by the DB
– Backups handled by the DB

● Scalability
– All component can be replicated
– No catalog in memory
– Limited by DB scalability

● No risk from the space point of view
● CPU is the limit. A lot of tuning done.
● No fear so far, CPU usage in a production instance

running stress testing is ~10%

DB
Stager

RH

LSF plugin

Recall

GC

MigHunter

44/44Sebastien Ponce, CASTOR Tutorial, February 20th 2009

That's it for now

	Slide 1
	Outline
	Slide 3
	Scope and constraints
	SHIFT
	SHIFT limitations
	Alternative solutions
	CASTOR1
	CASTOR1 limitations
	CASTOR2
	CASTOR2 Proposal (from users meeting 2003)
	Slide 12
	Context View
	General Picture of Castor
	Slide 15
	Client deliverables
	Central Services
	Stager Logic
	Stager Architecture
	Disk Cache and Tape Archive
	Slide 21
	Security and safety aspects
	Castor 2 Architecture
	Slide 24
	Old and new components
	Request Handler
	DLF GUI
	Slide 28
	Slide 29
	About languages
	Still around languages
	Architecture design
	Component views
	Activity diagrams
	State Diagrams
	Sequence diagrams
	Class diagrams
	Usage of UML diagrams
	Goal of code generation
	Class implementation
	Converters
	DB scripts
	Database Centric software
	Slide 44

