
Sebastien Ponce, CASTOR Tutorial, February 20th 2009 1/52

CASTOR TutorialCASTOR Tutorial

Part 2Part 2
Functional descriptionFunctional description

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 2/52

Outline
● Detailed view of the architecture

– Lifecycle of a GET and a PUT request

● Description and status of the components
– Main daemons

– Diskserver related

– Central services

– Tape related

● Tape migration and recall
– Workflow details

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 3/52

Outline
● Detailed view of the architecture

– Lifecycle of a GET and a PUT request

● Description and status of the components
– Main daemons

– Diskserver related

– Central services

– Tape related

● Tape migration and recall
– Workflow details

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 4/52

Lifecycle of a GET + recall
● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and checks for file availability
● If the file is not available, the recall process is

activated
● Once the file is available, stager asks the jobManager

to schedule the access to the file
● The JobManager enters a job into LSF and babysits it
● After the job was started, llient gets a callback and can

initiate the transfer
● The commandline is stager_get

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 5/49

stager_get (1)

Tape Servers

Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

JobManager
Scheduler

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 6/49

stager_get (2)

Tape Servers

Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is not available, it creates a DiskCopy
 in WAITTAPERECALL

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 7/49

stager_get (3)

Client

StagerJob

NameServer

RH

RR

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
o

ve
r

RTCPClientD

DB

VMGR

JobManager
Scheduler

• rtcpClientd polls the DB to get diskCopies in WAITTAPERECALL
• It organizes the recall of the data but the target filesystem is not yet
selected

Tape Servers

Ta
pe

D
ae

m
on

recaller

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 8/49

stager_get (4)

Client

StagerJob

NameServer

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
o

ve
r

RTCPClientD

DB

VMGR

Tape Servers

Ta
pe

D
ae

m
on

RH DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

RR

• recaller sends a request to the stager in order to know where to put the
file
• the request goes through the usual way: Request Handler, DB,
 stager (job service), Request Replier

recaller

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 9/49

stager_get (5)

Client

StagerJob

NameServer

VDQM

VMGR

RH

RR

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

JobManager
Scheduler

Tape Servers

Ta
pe

D
ae

m
on

RTCPD

Disk Servers

Mover

M
o

ve
r

RTCPClientD

DB

• rtcpd transfers the data from the tape to the selected filesystem
• the DB is updated with the new file size and position
• the original subrequest is set to RESTART status

recaller

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 10/49

stager_get (6)

Tape Servers

Ta
pe

D
ae

m
on

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is available, it calls the scheduler through the
 JobManager to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 11/49

stager_get (7)

Tape Servers Ta
pe

D
ae

m
o

n

RTCPD

NameServe
r

VDQM

VMGR

RH DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
o

ve
r

RR

• the StagerJob launches the right mover corresponding to the client
request
(note that the scheduler takes available movers into account)
• it answers to the client, giving to it the machine and port where to
contact the mover
• data is transfered
• DB is updated

DB

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 12/52

Lifecycle of a PUT + migration

● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and ask the jobManager

to scheduler the transfer
● The JobManager enters an LSF job and

babysits it
● Once the job starts, the client gets a

callback and can initiate the transfer
● After the transfer is completed, the stager is

informed and migration to tape is triggered

● The commandline is stager_put

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 13/49

stager_put (1)

Tape Servers

Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 14/49

stager_put (2)

Tape Servers

Ta
pe

D
ae

m
on

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It calls the scheduler through the JobManager to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 15/49

stager_put (3)

Tape Servers Ta
pe

D
ae

m
o

n

RTCPD

NameServer

VDQM

VMGR

RH DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
o

ve
r

RR

• the StagerJob launches the right mover (note that the scheduler takes
available movers into account)
• it answers to the client, giving the machine and port where to contact the
mover
• data is transferred
• DB is updated with the file size and the diskcopy is set in CANBEMIGR
and one or many TapeCopies are created

DB

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 16/49

stager_put (4)

Tape Servers

Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
o

ve
r

RH

RR

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

GC

RTCPClientD

MigHunter

DB

• thanks to a MigHunter, the new tapecopy is attached to the streams it can
belong to (depending on tapepools, svcclasses, ...)

JobManager
Scheduler

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 17/49

stager_put (5)

Client

StagerJob

NameServer

RH

RR

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

DB

VMGR

JobManager
Scheduler

• rtcpclientd will launch a migrator
• this one asks the DB for the next migration candidate
• the DB takes the best candidate in the stream
 (based on filesystems availability)
• the file is written to tape and the DB updated

Tape Servers Ta
pe

D
ae

m
o

n

Disk Servers

Mover

M
o

ve
r

RTCPClientD

migrator

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 18/52

Outline
● Detailed view of the architecture

– Lifecycle of a GET and a PUT request

● Description and status of the components
– Main daemons

– Diskserver related

– Central services

– Tape related

● Tape migration and recall
– Workflow details

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 19/52

Detailed picture of CASTOR

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 20/52

Status of all system components

● Request Handler, Stager, JobManager

● the scheduler (LSF) and its plugins

● StagerJob and protocols

● GC DB job, gcDaemon

● RmNode, RmMaster and the shared memory

● Distributed Logging Facility

● Python policies

● NameServer, VDQM, VMGR, CUPV

● MigHunter, recHandler, rtcpclientd, migrator, recaller,
rtcpd

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 21/52

Request Handler
● Scope

– Stores incoming requests into the DB
● Features

– Very lightweight
– Allows for request throttling
– Handles B/W lists

● Maturity
– Production, stable for years

● Implementation
– Fully C++
– Usage of the internal DB API

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 22/52

Stager
● Scope

– Main daemon for requests processing
● Features

– Stateless
– Multi-services implementation by thread pools

● Allows for independent services execution, even on different
nodes

● Enhanced scalability
● Maturity

– Production, stable
– Few bugs and RFEs, especially around the PL/SQL code

● Implementation
– Fully C++
– Usage of the internal DB API

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 23/52

JobManager
● Scope

– Handling submission of jobs to LSF
– Babysitting LSF in case of problems

● Features
– Stateless
– Automatic cleanups of old/failed jobs

● Maturity
– Production, stable

● Implementation
– Fully C++

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 24/52

LSF and its plugins
● Scope

– Scheduler of I/O access
– CASTOR plugins select the best FS for each I/O

● Features
– Redundant, via LSF failover mechanism
– 2 levels of plugins to make efficient selections

● First level in C++ for rough preselection
● Second level in python for flexibility

● Maturity
– Production, stable

● Implementation
– C++, python

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 25/52

StagerJob
● Scope

– Executable running on the diskserver and handling one I/O
● Features

– Supports all protocols (rfio, root, xroot, gridFTP)
● Via plugin mechanism with defined API
● 2 levels of support : RawMover and InstrumentedMover
● Implementing a new protocol is ~200 lines of code

– Babysits the transfers and handle failures
● Maturity

– Production, stable
– Although reimplemented from scratch in 2.1.8

● Implementation
– Fully C++
– Plugin mechanism for the different protocols

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 26/52

GC
● Scope

– Takes decision on which files to delete from the file
cache

● Features
– Policy based, with 3 provided defaults

● Default, FIFO, LRU
● Maturity

– Production, stable
● Implementation

– No daemon, no DB jobs
– based on weighting diskcopies in response to

events
● e.g. first access, disk to disk copy

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 27/52

gcDaemon
● Scope

– Deletes files selected by the stager DB in
gcWeight order

● Features
– Stateless daemon implemented as a stager client

● Maturity
– Production, stable

● Implementation
– C++
– Usage of the client API and the internal API

● proxy “remotized” implementation of the stager
● Note : takes no decision, the GC weight order

depends on the implemented GC policy

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 28/52

RMMaster & RMNode
● Scope

– Gather monitoring information from nodes
– Provide them to other components via shared memory

● Features
– Must run on LSF master node
– Redundant via failover mechanism
– RMMaster gathers data from RMNode
– RMNode runs on the diskservers and polls /proc data

● Maturity
– Production, stable

● Implementation
– Fully C++

– Using shared memory, also accessed by LSF plugins

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 29/52

Distributed Logging Facility
● Scope

– Central DB-based logging system
● Features

– A daemon accepts and stores any log entry from
any Castor subsystem

– A PHP-based GUI allows for querying the log
● Maturity

– Production, stable
● Implementation

– Fully C, “legacy” DB API

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 30/52

DLF GUI

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 31/52

Python policies
● Scope

– Externalize decisions based on policies
● Features

– Framework for executing python policy scripts
– Using precompilation to allow for fast execution
– Used by several components :

● MigHunter
● LSF plugin
● Migrator
● Recaller

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 32/52

NameServer
● Scope

– Archive the filesystem-like information for the
HSM files

– Associate tape related information
● Features

– Stateless daemon, DB backend
● Maturity

– Production, stable
– Being improved to improve latencies and

response times
● Implementation

– C
– ORACLE ProC

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 33/52

Volume and Drive Queue Mgr (VDQM)

● Scope
– Manage the tape queue and device status

● Features
– Stateless
– Supports drive dedication (regexp)
– Supports request prioritization

● Maturity
– Production, stable
– Although was recoded (VDQM2) and new version was

deployed only with 2.1.8
● Implementation

– Fully C++

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 34/52

Volume Manager (VMGR)
● Scope

– Logical Volume Repository. Inventory of all tapes
and their status

● Features
– Tape pools

● Grouping of tapes for given activities
● Counters for total and free space (calculated using

compression rates)
● Maturity

– Production, stable
● Implementation

– C
– ORACLE ProC

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 35/52

Castor User Privileges (Cupv)
● Scope

– Manages administrative authorization rights on
other CASTOR modules (nameserver, VMGR)

● Features
– Flat repository of privileges
– Supports regular expressions

● Maturity
– Production, stable

● Implementation
– C
– ORACLE ProC

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 36/52

MigHunter/RecHandler
● Scope

– Mighunter : attaches migration candidates to streams, can
hold back streams with no enough data

– RecHandler : handles recalls priorities, can delay mounts in
case only few files would be read

● Features
– Redundant, SvcClass based

– Policy based, using python framework
● Stream policy, migration policy, recall policy

● Maturity
– Production, stable
– Still evolving to allow more clever policies

● Implementation
– C++

– Usage of python policies

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 37/52

● Scope
– Master daemon controlling tape migration/recall

● Features
– Not stateless, but restart possible

● at the expend of tape dismounting
● But DB inconsistencies are cleaned up

– Single threaded
● Maturity

– Production, but has bugs
● Implementation

– C,
– Usage of internal DB API

● Will be replaced by the tape gateway

rtcpclientd

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 38/52

Migrator/recaller
● Scope

– Controls the tape migration/recall
– Connects to rtcp daemon on the tapeserver

● Features
– Forked by the rtcpclientd
– One migrator/recaller per tape server

● Maturity
– Production but has bugs

● Implementation
– C
– Usage of internal DB API

● Will be replaced by the tape gateway

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 39/52

Tape mover (rtcpd)
● Scope

– Copy files between tape and disk
● Features

– Highly multithreaded
● Overlaid network and tape I/O
● Large memory buffers allows for copying multiple

files in parallel
– Supports a large number of legacy tape formats…

● Maturity
– Production, stable

● Implementation
– C

● Will be extended and then replaces by the tape
aggregator

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 40/52

Outline
● Detailed view of the architecture

– Lifecycle of a GET and a PUT request

● Description and status of the components
– Main daemons

– Diskserver related

– Central services

– Tape related

● Tape migration and recall
– Workflow details

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 41/52

Tape Migration and Recall
● “rtcpclientd” is the main component dealing with all

interaction to the CASTOR tape archive
– For each running tape recall it forks a ‘recaller’ child

process per tape
– For each running tape migration it forks a ‘migrator’ child

process per tape
● Migration streams are created and populated by the

“MigHunter” component
● A TapeErrorHandler process is forked by the

rtcpclientd daemon whenever a recaller or migrator
child process exits with error status.

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 42/52

Tape migration/recall components

rtcpclientd Catalogue MigHunter
MigHunter

MigHunter
MigHunter

recaller
recaller

recaller
recaller

migrator
migrator

migrator
migrator

TapeErrorHandler

rtcpd

vdqmserv

vmgrdaemon

nsdaemon

rtcpd
rtcpd

rtcpd

rtcpd
rtcpd

rtcpd
rtcpd

fork

Castor1 component
Castor2 component

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 43/52

Tape recall (1)
● Triggered by disk cache misses in the stager

– Stager calls the name server to retrieve the tape
segment information (VID, fseq, blockid)

– Stager inserts a Tape and Segment in the DB
● With status depending on the use of recall policies

● RecHandler goes through recall candidates
– Enables waiting recalls according to policy

– Handles recall priorities and inform VDQM

● Rtcpclientd checks the DB for tapes to be recalled
– Submits the tape request to VDQM (tape queue)
– When mover (rtcpd) starts it connects back to the

rtcpclientd, which then forks a recaller process for
servicing the tape recall

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 44/52

Tape recall flow

stager nsdaemon
getsegattr(fileX)

I00234, fseq 45

I00234, PENDING
45, UNPROCESSED

rtcpclientd

tapesToDo ?

I00234

vdqmserv
queue

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 45/52

Tape recall flow

stager nsdaemon

I00234, MOUNTED
45, UNPROCESSED

rtcpclientd

rtcpd

started

recaller

fork

vdqmserv

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 46/52

Tape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd

recaller

segmentsForTape ?

fseq=45

rtcpd

vdqmserv

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 47/52

Tape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd

recaller

bestFileSystemForSegment ?

lxfsrk1234:/srv/castor/01

rtcpd

vdqmserv

lxfsrk1234:/srv/castor/01

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 48/52

Tape recall (2)
● The recaller attempts to optimize the use of tape

and disk resources
– Tape files are sorted

● Current in fseq order. Work needed to find more
optimal sorting taking into account the serpentine
track layout on media

– Requests for new files on same tape are
dynamically added to running request

– Target file system is decided given the current
load picture when the tape file is positioned

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 49/52

Tape migration
● Similar to tape recall but

– Triggered by policy rather than waiting requests
● Migration candidates are attached to ‘streams’

– A migration ‘Stream’ is a container of migration candidates
– Each Stream is associated with 0 or 1 tapes:

● 0 tape: stream not active (e.g. not yet picked up by rtcpclientd,
or VMGR tape pool is full)

● 1 tape: stream is running (tape write request is running) or
waiting for tape mount

– A Stream can survive many tapes (but only one at a time)
– A TapeCopy can be linked to many Streams

● When a TapeCopy is selected by one of the Streams, its
status is atomically updated preventing it from being selected
by another Stream

● The MigHunter process is responsible for attaching the
migration candidates to the streams
– Migration and stream policies can be used for fine-grained

control over this process

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 50/52

Example migration policy

def smallFilesMigrationPolicy
 (tapePool, castorfilename, copynb, fileId,
 fileSize, fileMode, uid, gid, aTime,
 mTime, cTime,fileClass):

 if ((fileSize <= 30000000) and
 (tapePool == smallfilesTP)):
 return 1
 elif ((fileSize > 30000000) and
 (tapePool != smallfilesTP)):
 return 1
 else:
 return 0

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 51/52

Example stream policy

def defaultStreamPolicy
 (runningStream, numFiles, dataVolume,
 maxNumStreams,status) :

 wantedStreams = int(numFiles / 1000)
 wantedStreams = wantedStreams%(maxNumStreams+1)
 if wantedStreams>runningStream:
 return 1
 else:
 return 0

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 52/52

That's it for now

	Slide 1
	Outline
	Slide 3
	Lifecycle of a GET + recall
	stager_get (1)
	stager_get (2)
	stager_get (3)
	stager_get (4)
	stager_get (5)
	stager_get (6)
	stager_get (7)
	Lifecycle of a PUT + migration
	stager_put (1)
	stager_put (2)
	stager_put (3)
	stager_put (4)
	stager_put (5)
	Slide 18
	Detailed picture of CASTOR
	Status of all system components
	Request Handler
	Stager
	Slide 23
	LSF plugin
	Slide 25
	Slide 26
	gcDaemon
	RMMaster & RMNode
	Distributed Logging Facility
	DLF GUI
	Expert daemon (expertd)
	Slide 32
	Volume and Drive Queue Mgr (VDQM)
	Volume Manager (VMGR)
	Castor User Privileges (Cupv)
	MigHunter
	rtcpclientd
	Migrator/recaller
	Tape mover (rtcpd)
	Slide 40
	Tape Migration and Recall
	Tape migration/recall components
	Tape recall (1)
	Tape recall flow
	Slide 45
	Slide 46
	Slide 47
	Tape recall (2)
	Tape migration
	Example policy
	Slide 51
	Slide 52

