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Outline
● Detailed view of the architecture

– Lifecycle of a GET and a PUT request

● Description and status of the components
– Main daemons

– Diskserver related

– Central services

– Tape related

● Tape migration and recall
– Workflow details
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Lifecycle of a GET + recall
● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and checks for file availability
● If the file is not available, the recall process is 

activated
● Once the file is available, stager asks the jobManager 

to schedule the access to the file
● The JobManager enters a job into LSF and babysits it
● After the job was started, llient gets a callback and can 

initiate the transfer
● The commandline is stager_get
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• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB
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• rtcpd transfers the data from the tape to the selected filesystem
• the DB is updated with the new file size and position
• the original subrequest is set to RESTART status

recaller
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• Stager polls the DB to get the request
• It checks for file availability
• The file is available, it calls the scheduler through the
   JobManager to schedule the I/O
• The scheduler launches a StagerJob
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• data is transfered
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Lifecycle of a PUT + migration

● Client connects to the RH
● RH stores the request into the db
● Stager polls the db and ask the jobManager 

to scheduler the transfer
● The JobManager enters an LSF job and 

babysits it
● Once the job starts, the client gets a 

callback and can initiate the transfer
● After the transfer is completed, the stager is 

informed and migration to tape is triggered

● The commandline is stager_put
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stager_put (1)
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• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB
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• Stager polls the DB to get the request
• It calls the scheduler through the JobManager to schedule the I/O
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• the StagerJob launches the right mover (note that the scheduler takes 
available movers into account)
• it answers to the client, giving the machine and port where to contact the 
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• DB is updated with the file size and the diskcopy is set in CANBEMIGR 
and one or many TapeCopies are created
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stager_put (4)
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• rtcpclientd will launch a migrator
• this one asks the DB for the next migration candidate
• the DB takes the best candidate in the stream
 (based on filesystems availability)
• the file is written to tape and the DB updated
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Detailed picture of CASTOR
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Status of all system components

● Request Handler, Stager, JobManager

● the scheduler (LSF) and its plugins

● StagerJob and protocols

● GC DB job, gcDaemon

● RmNode, RmMaster and the shared memory

● Distributed Logging Facility

● Python policies

● NameServer, VDQM, VMGR, CUPV

● MigHunter, recHandler, rtcpclientd, migrator, recaller, 
rtcpd
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Request Handler
● Scope

– Stores incoming requests into the DB
● Features

– Very lightweight
– Allows for request throttling
– Handles B/W lists

● Maturity
– Production, stable for years

● Implementation
– Fully C++
– Usage of the internal DB API
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Stager
● Scope

– Main daemon for requests processing
● Features

– Stateless
– Multi-services implementation by thread pools

● Allows for independent services execution, even on different 
nodes

● Enhanced scalability
● Maturity

– Production, stable
– Few bugs and RFEs, especially around the PL/SQL code

● Implementation
– Fully C++
– Usage of the internal DB API
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JobManager
● Scope

– Handling submission of jobs to LSF
– Babysitting LSF in case of problems

● Features
– Stateless
– Automatic cleanups of old/failed jobs

● Maturity
– Production, stable

● Implementation
– Fully C++
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LSF and its plugins
● Scope

– Scheduler of I/O access
– CASTOR plugins select the best FS for each I/O

● Features
– Redundant, via LSF failover mechanism
– 2 levels of plugins to make efficient selections

● First level in C++ for rough preselection
● Second level in python for flexibility

● Maturity
– Production, stable

● Implementation
– C++, python
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StagerJob
● Scope

– Executable running on the diskserver and handling one I/O
● Features

– Supports all protocols (rfio, root, xroot, gridFTP)
● Via plugin mechanism with defined API
● 2 levels of support : RawMover and InstrumentedMover
● Implementing a new protocol is ~200 lines of code

– Babysits the transfers and handle failures
● Maturity

– Production, stable
– Although reimplemented from scratch in 2.1.8

● Implementation
– Fully C++
– Plugin mechanism for the different protocols
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GC
● Scope

– Takes decision on which files to delete from the file 
cache

● Features
– Policy based, with 3 provided defaults

● Default, FIFO, LRU
● Maturity

– Production, stable
● Implementation

– No daemon, no DB jobs
– based on weighting diskcopies in response to 

events
● e.g. first access, disk to disk copy
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gcDaemon
● Scope

– Deletes files selected by the stager DB in 
gcWeight order

● Features
– Stateless daemon implemented as a stager client

● Maturity
– Production, stable

● Implementation
– C++
– Usage of the client API and the internal API

● proxy “remotized” implementation of the stager
● Note : takes no decision, the GC weight order 

depends on the implemented GC policy
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RMMaster & RMNode
● Scope

– Gather monitoring information from nodes
– Provide them to other components via shared memory

● Features
– Must run on LSF master node
– Redundant via failover mechanism
– RMMaster gathers data from RMNode
– RMNode runs on the diskservers and polls /proc data

● Maturity
– Production, stable

● Implementation
– Fully C++

– Using shared memory, also accessed by LSF plugins
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Distributed Logging Facility
● Scope

– Central DB-based logging system
● Features

– A daemon accepts and stores any log entry from 
any Castor subsystem

– A PHP-based GUI allows for querying the log
● Maturity

– Production, stable
● Implementation

– Fully C, “legacy” DB API
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DLF GUI
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Python policies
● Scope

– Externalize decisions based on policies
● Features

– Framework for executing python policy scripts
– Using precompilation to allow for fast execution
– Used by several components :

● MigHunter
● LSF plugin
● Migrator
● Recaller
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NameServer
● Scope

– Archive the filesystem-like information for the 
HSM files

– Associate tape related information
● Features

– Stateless daemon, DB backend
● Maturity

– Production, stable
– Being improved to improve latencies and 

response times
● Implementation

– C
– ORACLE ProC
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Volume and Drive Queue Mgr (VDQM)

● Scope
– Manage the tape queue and device status

● Features
– Stateless
– Supports drive dedication (regexp)
– Supports request prioritization

● Maturity
– Production, stable
– Although was recoded (VDQM2) and new version was 

deployed only with 2.1.8
● Implementation

– Fully C++
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Volume Manager (VMGR)
● Scope

– Logical Volume Repository. Inventory of all tapes 
and their status

● Features
– Tape pools

● Grouping of tapes for given activities
● Counters for total and free space (calculated using 

compression rates)
● Maturity

– Production, stable
● Implementation

– C
– ORACLE ProC
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Castor User Privileges (Cupv) 
● Scope

– Manages administrative authorization rights on 
other CASTOR modules (nameserver, VMGR)

● Features
– Flat repository of privileges
– Supports regular expressions

● Maturity
– Production, stable

● Implementation
– C
– ORACLE ProC
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MigHunter/RecHandler
● Scope

– Mighunter : attaches migration candidates to streams, can 
hold back streams with no enough data

– RecHandler : handles recalls priorities, can delay mounts in 
case only few files would be read

● Features
– Redundant, SvcClass based

– Policy based, using python framework
● Stream policy, migration policy, recall policy

● Maturity
– Production, stable
– Still evolving to allow more clever policies

● Implementation
– C++

– Usage of python policies
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● Scope
– Master daemon controlling tape migration/recall

● Features
– Not stateless, but restart possible 

● at the expend of tape dismounting
● But DB inconsistencies are cleaned up

– Single threaded
● Maturity

– Production, but has bugs
● Implementation

– C, 
– Usage of internal DB API

● Will be replaced by the tape gateway

rtcpclientd
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Migrator/recaller
● Scope

– Controls the tape migration/recall
– Connects to rtcp daemon on the tapeserver

● Features
– Forked by the rtcpclientd
– One migrator/recaller per tape server

● Maturity
– Production but has bugs

● Implementation
– C
– Usage of internal DB API

● Will be replaced by the tape gateway
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Tape mover (rtcpd) 
● Scope

– Copy files between tape and disk
● Features

– Highly multithreaded
● Overlaid network and tape I/O
● Large memory buffers allows for copying multiple 

files in parallel
– Supports a large number of legacy tape formats…

● Maturity
– Production, stable

● Implementation
– C

● Will be extended and then replaces by the tape 
aggregator
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Tape Migration and Recall
● “rtcpclientd” is the main component dealing with all 

interaction to the CASTOR tape archive
– For each running tape recall it forks a ‘recaller’ child 

process per tape
– For each running tape migration it forks a ‘migrator’ child 

process per tape
● Migration streams are created and populated by the 

“MigHunter” component
● A TapeErrorHandler process is forked by the 

rtcpclientd daemon whenever a recaller or migrator 
child process exits with error status.
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Tape migration/recall components
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Tape recall (1)
● Triggered by disk cache misses in the stager

– Stager calls the name server to retrieve the tape 
segment information (VID, fseq, blockid)

– Stager inserts a Tape and Segment in the DB
● With status depending on the use of recall policies

● RecHandler goes through recall candidates
– Enables waiting recalls according to policy

– Handles recall priorities and inform VDQM

● Rtcpclientd checks the DB for tapes to be recalled
– Submits the tape request to VDQM (tape queue)
– When mover (rtcpd) starts it connects back to the 

rtcpclientd, which then forks a recaller process for 
servicing the tape recall
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Tape recall flow

stager nsdaemon
getsegattr(fileX)

I00234, fseq 45

I00234, PENDING
45, UNPROCESSED

rtcpclientd

tapesToDo ?

I00234

vdqmserv
queue
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Tape recall flow

stager nsdaemon

I00234, MOUNTED
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Tape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd
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fseq=45

rtcpd

vdqmserv
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Tape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd

recaller

bestFileSystemForSegment ?

lxfsrk1234:/srv/castor/01

rtcpd

vdqmserv

lxfsrk1234:/srv/castor/01
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Tape recall (2)
● The recaller attempts to optimize the use of tape 

and disk resources
– Tape files are sorted

● Current in fseq order. Work needed to find more 
optimal sorting taking into account the serpentine 
track layout on media

– Requests for new files on same tape are 
dynamically added to running request

– Target file system is decided given the current 
load picture when the tape file is positioned
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Tape migration
● Similar to tape recall but

– Triggered by policy rather than waiting requests
● Migration candidates are attached to ‘streams’

– A migration ‘Stream’ is a container of migration candidates
– Each Stream is associated with 0 or 1 tapes:

● 0 tape: stream not active (e.g. not yet picked up by rtcpclientd, 
or VMGR tape pool is full)

● 1 tape: stream is running (tape write request is running) or 
waiting for tape mount

– A Stream can survive many tapes (but only one at a time)
– A TapeCopy can be linked to many Streams

● When a TapeCopy is selected by one of the Streams, its 
status is atomically updated preventing it from being selected 
by another Stream

● The MigHunter process is responsible for attaching the 
migration candidates to the streams
– Migration and stream policies can be used for fine-grained 

control over this process
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Example migration policy

def smallFilesMigrationPolicy
  (tapePool, castorfilename, copynb, fileId,
   fileSize, fileMode, uid, gid, aTime,
   mTime, cTime,fileClass):

  if ((fileSize <= 30000000) and
      (tapePool == smallfilesTP)):
    return 1
  elif ((fileSize > 30000000) and
        (tapePool != smallfilesTP)):
    return 1
  else:
    return 0
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Example stream policy

def defaultStreamPolicy 
    (runningStream, numFiles, dataVolume,
     maxNumStreams,status) :

  wantedStreams = int(numFiles / 1000)
  wantedStreams = wantedStreams%(maxNumStreams+1)
  if wantedStreams>runningStream:
     return 1
  else:
     return 0
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That's it for now
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