
Sebastien Ponce, CASTOR Tutorial, February 20th 2009 1/15

CASTOR TutorialCASTOR Tutorial

Part 3Part 3
Protocols, clients and APIsProtocols, clients and APIs

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 2/15

Outline
● Internal C++ API vs client, C API
● Command line clients
● Protocol supported

– Internal vs external protocol support

– Protocols supported
● RFIO, ROOT, XROOT, gridFTP

– Specificities of Xroot

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 3/15

The APIs and client pile

● 2 levels of API
– Internal, C++
– Client, C

● 2 levels of
support for
protocols
– Internal
– Other or

external

CASTOR core framework

C++ internal API

Client C API

C
om

m
and

line clients
API

client

Internal
protocols

RFIO

O
ther

protocols

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 4/15

Internal API
● API to the core CASTOR 2 framework
● Used by the castor components

and some tighly integrated
external parts
– Protocols like rfio, root, xroot
– SRM 2

● Implemented in C++
– With some parts interfaced in C thanks to code

generation
● Not distributed in RPMs, only in CVS

– Makes compilation of e.g. SRM tricky
● Not stable on the middle/long term

CASTOR core framework

C++ internal API

Client C API

C
o

m
m

a
n

d
lin

e
 clie

n
ts

API
client

In
te

rn
a

l
p

ro
to

co
ls

RFIO

O
th

e
r

p
ro

to
co

ls

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 5/15

Client API
● API to be used by the clients

– External software
– Command line clients

● Covers all castor components
● C API at general request

– Still implemented in C++
– This is transparent

● Distributed in the castor-devel RPM
● Very stable

– Guaranteed backward compatibility within major
release

– Ensured by soname of the CASTOR libraries
● e.g. CMS is still using CASTOR 2.1.1 clients

CASTOR core framework

C++ internal API

Client C API

C
o

m
m

a
n

d
lin

e
 clie

n
ts

API
client

In
te

rn
a

l
p

ro
to

co
ls

RFIO

O
th

e
r

p
ro

to
co

ls

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 6/15

Command line clients
● Split into several sets

– Nameserver commands (prefix ns)
● For metadata, namespace related

– RFIO commands (prefix rf)
● For transfers using rfio

– Stager commands (prefix stager)
● For creating, recalling, migrating, querying the files

– Tape related commands
● For the drive queue (prefix vdqm)
● For the volume management (prefix vmgr)
● For the tape handling (prefix tape or tp)
● For the transfer to tape (prefix rtcp)

– Privileges commands
● For internal privileges (prefix cupv)

– Many others (admin, logging, …)

CASTOR core framework

C++ internal API

Client C API

C
o

m
m

a
n

d
lin

e
 clie

n
ts

API
client

In
te

rn
a

l
p

ro
to

co
ls

RFIO

O
th

e
r

p
ro

to
co

ls

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 7/15

Command line clients (2)
● Command lines are distributed in separate RPMs

– ns-client, cupv-client, vmgr-client, vdqm-client, tape-
client, rfio-client, …

● Command line should always use the client API
– Thus light weighted, only parsing options and

displaying result on the prompt
● All have

– man pages
– –h, --help flag

CASTOR core framework

C++ internal API

Client C API

C
o

m
m

a
n

d
lin

e
 clie

n
ts

API
client

In
te

rn
a

l
p

ro
to

co
ls

RFIO

O
th

e
r

p
ro

to
co

ls

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 8/15

Protocols
● Run inside stagerJob on the diskserver

– Can be even forked by the stagerJob
● 2 levels of CASTOR integration

– Internal protocols can access
CASTOR disk cache

– External protocols go through
an internal one

● For internal ones, 2 levels of code integration
– Raw protocols are only wrapped into stagerJob
– Integrated protocols are CASTOR aware

● And call the internal C++ API

CASTOR core framework

C++ internal API

Client C API

C
o

m
m

a
n

d
lin

e
 clie

n
ts

API
client

In
te

rn
a

l
p

ro
to

co
ls

RFIO

O
th

e
r

p
ro

to
co

ls

S
R

M
 2

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 9/15

Support of internal protocols
● Internal Protocol

– Has access to the castor internal C++ API
– Deals with file names like /castor/… by calling the

stager
– Are used as native protocols to read the data from the

disk on the diskserver and transfer it to the clients
– Are developed/modified by the CASTOR team

Stager

Client RFIO
client

Disk Server

Spawned
RFIOD

C++ APIGet/Put request

Schedules and
launches mover

File Open/Close

Transfer

/castor/cern.ch/…

(1)(1)

(3)(3)(2)(2)

(5)(5)

(4, 6)(4, 6)

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 10/15

Support of other protocols
● Other protocols

– Use only the client API
– Don’t know about names like /castor/…
– Use internally a native protocol to access the data

Stager

Client

Disk Server

gridFTP
daemon

C++ API File Open/Close

Transfer

gsiftp://diskserver:port//castor/cern.ch/…

RFIO
client

RFIO
daemonSRM

PrepareTo

Local
RFIO
traffic

Get/Put request

Schedules and
launches mover

(2)(2)

(1)(1)

(4)(4)

(3)(3)

(5)(5)

(6, 8)(6, 8)

(7)(7)

(7bis)(7bis)

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 11/15

RFIO and ROOT
● Internal protocols, running on all diskservers
● RFIO is part of the castor distribution
● ROOT is part of the ROOT distribution

– Initial implementation by the CASTOR team
– Supported by the ROOT team
– Patched by CASTOR developers when needed

● The stager is called for each single file access,
allowing full I/O scheduling

● The daemons (rfiod and rootd) are started on
demand
– They are modified to only serve the scheduled file
– They serve a single request in the specified mode

(e.g. ro)

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 12/15

GridFTP
● Exists in 2 versions : internal and external
● Only version 2 is supported (Version 1 dropped)
● In external mode :

– Runs independently of CASTOR, under root

– Uses internally RFIO to retrieve the files
● This RFIO should always be local (use of SRM)
● SRM is not mandatory

– gridmap file needed for user mapping
● In internal mode :

– Spawned on demand, under stage/st

– SRM required

– gridmap file ignored

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 13/15

2.1.7 XROOT integration
● XROOT is an internal protocol
● Xroot daemon runs independently of CASTOR
● The redirector is CASTOR aware

– And talks to the stager

Stager

Client

XROOT
redirector

Disk Server

XROOTD

C++ API
Get/Put

Schedules only

File Open/Close

Transfer

/castor/cern.ch/…

XROOT
client

request

(1)(1)

(6)(6)

(2)(2)

(5)(5)

(4)(4) (3)(3)

redirection

open

(8)(8)

(7)(7)

 If concurrent accesses to one file
 Steps 2, 3 are skipped
 Steps 6, 8 are only issued once

Sebastien Ponce, CASTOR Tutorial, February 20th 2009 14/15

2.1.8 XROOT integration
● XROOT is part of CASTOR, much tighter integration

– Actually only a plugin to XROOT

Stager

Client

XROOT
redirector

Disk Server

XROOTD

Pget/Put + file open

File Closed

Transfer

/castor/cern.ch/…

XROOT
client

(1)(1)

(3)(3)

(4)(4)
redirection

(6)(6)

(5)(5)

● Step 3 is configurable for Get requests
– can be ignored with step 2 using XROOT caching
– can schedule with LSF
– default is none of those

● Step 6 and 7 only exist for puts
● Native Xroot in case of reads

– but for one access to the nameserver on first read

prepareForMigration
NS

(2)(2)

stat/creat
(7)(7)

Sebastien Ponce, CASTOR Tutorial, February 20th 2009

2.1.8 XROOT integration
● Benefits from low latency of XROOT

– 80ms per file opening (1-2s for CASTOR)
● Will be lowered via nameserver optimizations

– few ms if XROOT cache is activated
● Many connections per second (small files)

– >700 connections per second
● Native XROOT for bandwidth optimizations

– Can serve concurrently 100s of streams per node
● Extensions of XROOT

– Security (Globus, kerberos)

– Stream scheduling on a disk server
● Ability to dynamically lower throughput dedicated to

users when a tape stream starts

	Slide 1
	Slide 2
	The APIs and client pile
	Internal API
	Client API
	Command line clients
	Command line clients (2)
	Slide 8
	Support of internal protocols
	Support of other protocols
	RFIO and ROOT
	GridFTP
	XROOT
	Slide 14
	Slide 15

