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Outline
● Internal C++ API vs client, C API
● Command line clients
● Protocol supported

– Internal vs external protocol support

– Protocols supported
● RFIO, ROOT, XROOT, gridFTP

– Specificities of Xroot
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The APIs and client pile

● 2 levels of API
– Internal, C++
– Client, C

● 2 levels of 
support for 
protocols
– Internal
– Other or 

external
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Internal API
● API to the core CASTOR 2 framework
● Used by the castor components

and some tighly integrated
external parts
– Protocols like rfio, root, xroot
– SRM 2

● Implemented in C++
– With some parts interfaced in C thanks to code 

generation
● Not distributed in RPMs, only in CVS

– Makes compilation of e.g. SRM tricky
● Not stable on the middle/long term
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Client API
● API to be used by the clients

– External software
– Command line clients

● Covers all castor components
● C API at general request

– Still implemented in C++
– This is transparent

● Distributed in the castor-devel RPM
● Very stable

– Guaranteed backward compatibility within major 
release

– Ensured by soname of the CASTOR libraries
● e.g. CMS is still using CASTOR 2.1.1 clients

CASTOR core framework
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Command line clients
● Split into several sets

– Nameserver commands (prefix ns)
● For metadata, namespace related

– RFIO commands (prefix rf)
● For transfers using rfio

– Stager commands (prefix stager)
● For creating, recalling, migrating, querying the files

– Tape related commands
● For the drive queue (prefix vdqm)
● For the volume management (prefix vmgr)
● For the tape handling (prefix tape or tp)
● For the transfer to tape (prefix rtcp)

– Privileges commands
● For internal privileges (prefix cupv)

– Many others (admin, logging, …)
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Command line clients (2)
● Command lines are distributed in separate RPMs

– ns-client, cupv-client, vmgr-client, vdqm-client, tape-
client, rfio-client,  …

● Command line should always use the client API
– Thus light weighted, only parsing options and 

displaying result on the prompt
● All have

– man pages
– –h, --help flag
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Protocols
● Run inside stagerJob on the diskserver

– Can be even forked by the stagerJob
● 2 levels of CASTOR integration

– Internal protocols can access
CASTOR disk cache

– External protocols go through
an internal one

● For internal ones, 2 levels of code integration
– Raw protocols are only wrapped into stagerJob
– Integrated protocols are CASTOR aware

● And call the internal C++ API

CASTOR core framework
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Support of internal protocols
● Internal Protocol

– Has access to the castor internal C++ API
– Deals with file names like /castor/… by calling the 

stager
– Are used as native protocols to read the data from the 

disk on the diskserver and  transfer it to the clients
– Are developed/modified by the CASTOR team
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Support of other protocols
● Other protocols

– Use only the client API
– Don’t know about names like /castor/…
– Use internally a native protocol to access the data
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C++ API File Open/Close

Transfer
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RFIO and ROOT
● Internal protocols, running on all diskservers
● RFIO is part of the castor distribution
● ROOT is part of the ROOT distribution

– Initial implementation by the CASTOR team
– Supported by the ROOT team
– Patched by CASTOR developers when needed

● The stager is called for each single file access, 
allowing full I/O scheduling

● The daemons (rfiod and rootd) are started on 
demand
– They are modified to only serve the scheduled file
– They serve a single request in the specified mode 

(e.g. ro)
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GridFTP
● Exists in 2 versions : internal and external
● Only version 2 is supported (Version 1 dropped)
● In external mode :

– Runs independently of CASTOR, under root

– Uses internally RFIO to retrieve the files
● This RFIO should always be local (use of SRM)
● SRM is not mandatory

– gridmap file needed for user mapping
● In internal mode :

– Spawned on demand, under stage/st

– SRM required

– gridmap file ignored
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2.1.7 XROOT integration
● XROOT is an internal protocol
● Xroot daemon runs independently of CASTOR
● The redirector is CASTOR aware

– And talks to the stager
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 If concurrent accesses to one file
 Steps 2, 3 are skipped
 Steps 6, 8 are only issued once
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2.1.8 XROOT integration
● XROOT is part of CASTOR, much tighter integration

– Actually only a plugin to XROOT

Stager

Client

XROOT
redirector

Disk Server

XROOTD

Pget/Put + file open

File Closed

Transfer

/castor/cern.ch/…

XROOT
client
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(6)(6)

(5)(5)

● Step 3 is configurable for Get requests
– can be ignored with step 2 using XROOT caching
– can schedule with LSF
– default is none of those

● Step 6 and 7 only exist for puts
● Native Xroot in case of reads

– but for one access to the nameserver on first read
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2.1.8 XROOT integration
● Benefits from low latency of XROOT

– 80ms per file opening (1-2s for CASTOR)
● Will be lowered via nameserver optimizations

– few ms if XROOT cache is activated
● Many connections per second (small files)

– >700 connections per second
● Native XROOT for bandwidth optimizations

– Can serve concurrently 100s of streams per node
● Extensions of XROOT

– Security (Globus, kerberos)

– Stream scheduling on a disk server
● Ability to dynamically lower throughput dedicated to 

users when a tape stream starts
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