
Sebastien Ponce, Test suite tutorial, October 2009 1/45

CASTORCASTOR
test suite tutorialtest suite tutorial

Sebastien Ponce, Test suite tutorial, October 2009 2/45

Outline
● Why to redo the test suite (1 slide)

● User view (12 slides)
– Running the test suite

– Configuring the test suite

– Overview of new features and tests

● Test developer view (11 slides)
– High level : buildTestCase tool

– Lower level : extending tags & resources

● Test suite developer view (19 slides)
– Internals of the test suite

– Internals of buildTestCase

Sebastien Ponce, Test suite tutorial, October 2009 3/45

Why
● To ease creation of new tests

– No need to code to create a test

– Tool provided to create a test from a
terminal session

● To extend the capabilities of the test suite

– Load balancing and parallelization

– Accurate output parsing and error detection

– Easy configuration
● And checks of resources availability

– Easy selection of tests to be run

Sebastien Ponce, Test suite tutorial, October 2009 4/45

User viewUser view

Sebastien Ponce, Test suite tutorial, October 2009 5/45

Broad view of infrastructure
● Framework based on py.test

– Command line tool

– Collects and runs automated tests

– Part of pylib

● Automatic discovery of tests

– Just go to the top of the test directory

– And run py.test
● Many nice features

– Parallelization and load balancing of tests

– Advanced test selection

– Many running modes

http://codespeak.net/py/dist/test/

http://codespeak.net/py/dist/test/

Sebastien Ponce, Test suite tutorial, October 2009 6/45

How to run the test suite

> cd newtestsuite

> py.test

========= test session starts =======

<...>

test_generic.py sssssssssssssssssssssss

<...>

Sebastien Ponce, Test suite tutorial, October 2009 7/45

How to run the test suite (2)

> py.test –-all

========= test session starts =======

<...>

test_generic.pyF......

===== 1 failed, 12 passed in 10.s =====

Sebastien Ponce, Test suite tutorial, October 2009 8/45

Selecting tests
● Tests are divided in components

– currently rfio, client, tape, xroot, gridftp, root

● To run a given component use --<component>

● To run all tests, use -A, --all

– --no<component> allows to exclude some

● To further select specific tests

– Use -k KEYWORD
● Only run tests matching the keyword
● Use '-' to negate
● Use ':' to run all subsequent tests

● e.g. py.test –all –noxroot, py.test --rfio -k Rfdir

Sebastien Ponce, Test suite tutorial, October 2009 9/45

Selecting output level
Default

'Verbose' : -v

Sebastien Ponce, Test suite tutorial, October 2009 10/45

Selecting output level (2)
Show activity : -s

Sebastien Ponce, Test suite tutorial, October 2009 11/45

Configuring a run
● Default config file is CastorTestSuite.options

– Can be changed via -C, --configfile

● Got through the file and define

– paths to use
● Inside castor (tape and non tape)
● locally and for remote transfers

– service classes to use

– environment
● STAGER_HOST/PORT/TRACE
● ROOT/XROOT/GLOBUS locations

Sebastien Ponce, Test suite tutorial, October 2009 12/45

What is new ?
● All existing tests have been kept

– Except for the ability to run tape stress testing
● Never used in practice

● New features

– Automatic testing of all possible syntaxes
● e.g. rfio/root/xroot TURLs, xrdcp options

– Checking of resources
● e.g. check status of service classes,

availability of grid proxy, …
– Automatic cleanup of all temporary files

● in castor and locally
● except if –nocleanup is used

Sebastien Ponce, Test suite tutorial, October 2009 13/45

New tests (Xroot)
● Extended Xroot test suite

– xrdcp fully covered
● On top of root access

– xrd commands tested
● chmod, mkdir, rmdir, stat, rm

– service class specific command tested

● Found a number of small issues

– rm does always drop from NS (already fixed)

– -O options + URL options not supported

– chmod does not respect ow bit (xroot feature)

– xrd config file not fully understood

Sebastien Ponce, Test suite tutorial, October 2009 14/45

New tests (others)

● GridFTP internal tests added

– basic transfer

– SRM like behavior
● with prepareToPut/putDone

– SRM actions are actually simulated by dev tools
● stager_actualget/put

● Tape

– Canceled recall test added

● Client

– Wildcard service class on a put

Sebastien Ponce, Test suite tutorial, October 2009 15/45

Conclusion
● Improved usability

– Better selection of tests

– Improved output (+ several flavours)
● Improved coverage

– More tests

– More strict comparisons

– More types of URLs/options tested
● Already used for 2.1.9-1 certification

Please use it, and report problems/successes

Sebastien Ponce, Test suite tutorial, October 2009 16/45

Test developer viewTest developer view

Note : I would include the operation teams in the test developers from now on

Sebastien Ponce, Test suite tutorial, October 2009 17/45

the buildTestCase tool
● Allows creation of test cases from command line

Sebastien Ponce, Test suite tutorial, October 2009 18/45

What is a test ?

● An input file

● One output file per command

● In both cases, actual values have been
replaced by 'tags'

– which will be replace by proper values when the
test suite will be run

Sebastien Ponce, Test suite tutorial, October 2009 19/45

A more complex case

Sebastien Ponce, Test suite tutorial, October 2009 20/45

How are test organized ?
● The tests reside in the

castortests directory

● Each <s> subdir is a test
set and maps to --<s>

● The hierarchy of tests is
otherwise free

● Considered files are

– *.input, *.output<n>,
*.resources

– default.resources
● Other files are ignored

Sebastien Ponce, Test suite tutorial, October 2009 21/45

Resources
● What is a resource

– something you need for a given (set of) tests

– e.g. rfio, castor, xroot, remoteRfio

● How to define resource <r>

– create a regular test case testing for <r>

– put it in the resources/<r> directory
● How to declare that a given test needs a resource

– list needed resources in <test>.resources file

– or group needed resources at any level of the
test hierarchy in a default.resources file

Sebastien Ponce, Test suite tutorial, October 2009 22/45

Resources practically

● The xroot/root test needs root resource
● On top, all tests within xroot need castor and xroot
● The castor resource consists of 3 tests
● The resource is available only if the 3 tests pass
● Otherwise, tests will fail or will be skipped,
depending on configuration

Sebastien Ponce, Test suite tutorial, October 2009 23/45

The tag mechanism
● A tag is any string within '<' and '> [+ a number]

– Only character forbidden in a tag is '>'

● A tag in an input file

– Will be replaced by a proper value
● Or n values and test is run n times

– Needs to be known from the test suite

– Can be numbered, will get different values

● A tag in an output file

– will be replaced by its value if known
– Otherwise, matches anything

● The value found is then known for subsequent
occurrences across the whole test case

Sebastien Ponce, Test suite tutorial, October 2009 24/45

Known tags
● Generic

– tapeFileName, noTapeFileName

– tmpLocalFileName, remoteFileName

– tapeServiceClass, diskOnlyServiceClass

– castorTag
● Resource specific

– Castor : stageHost

– Rfio : rfcp, rfcpupd, rfioTURL

– Root : rootbin, rootRFIOURL, rootCastorURL

– Xroot : xrd, xrdcp, xrdcpURL, xroot(Root)URL

– GridFTP : grid_proxy_info, globus_url_copy

Sebastien Ponce, Test suite tutorial, October 2009 25/45

Defining new tags
● Tags are attached to resources (except generic)

● Defining tags means writing/extending the
tags.py file of a given resource

– new tags are given value by defining a
Setup.getTag_<tagName> function

– More details on complex cases in next part

Sebastien Ponce, Test suite tutorial, October 2009 26/45

Conclusion
● buildTest.py is a very handy tool to create tests.

– Please use it extensively and mail the
.input/.output files to the dev team

– Proper test coverage can only be obtained by
involving both dev and operation teams

● Use resources when you need them

– Most standard ones are defined

– Ask for new ones when you need them

Sebastien Ponce, Test suite tutorial, October 2009 27/45

Testsuite developer viewTestsuite developer view

Where the audience drops....

Sebastien Ponce, Test suite tutorial, October 2009 28/45

py.test
● Tool to collect and run automated tests

● In practice :

– looks for test_*.py files in current dir and children

– run all functions with name test_*
● Configuration done in python

– via the conftest.py file at top level
● Test cases are free format python code

– And use assert statement for resulting checking

Sebastien Ponce, Test suite tutorial, October 2009 29/45

funcargs
● Ability to use factory functions for test arguments

– to parametrize test functions

– to separate test code from test conditions
● Any test argument <a> is considered a funcarg

– py.test calls pytest_funcarg__<a>, passing a
request object to generate a value

– request gives access to full state of pytest

Sebastien Ponce, Test suite tutorial, October 2009 30/45

Caching funcargs
● A funcarg can return an object instance

● funcargs can be cached so that the same
instance is reused for several tests

– e.g. Setup/Config object, DB connections, heavy
initialization

– a teardown function can be passed (e.g. to close
DB connection at the end)

– Supported scopes : function, module, session

Sebastien Ponce, Test suite tutorial, October 2009 31/45

Parametrized tests
● Test can be parametrized to run multiple times

with different values of their arguments

● Output

Sebastien Ponce, Test suite tutorial, October 2009 32/45

The castor generic test
● A single test case is actually implemented

● setup is a funcarg returning a session cached
object representing the current setup

● The generic test is reused to run all tests of the
castor test suite, one by one

● Setup is the heart of the test suite, listTests only
lists the tests present in castortests subdir

Sebastien Ponce, Test suite tutorial, October 2009 33/45

The Setup object
● Interface :

– __init__ : reads config file, sets up environment

– cleanupAndReset : cleans all temporary files
created (local, remote and in castor)

– runTest : runs a given test
● Skip it or not depending on options
● Check resources
● Parse .input file, replace tag values and run

all commands
● Compare output with .output files, dealing

with tag values again
– getTag : gets the value of a given tag

Sebastien Ponce, Test suite tutorial, October 2009 34/45

Handling tags in .input files
● Setup.getTag tries to find a value for the tag

– first in the cache of already used tags

– then in the 'Tags' section of the option file

– else by calling a methog getTag_<name>() on the
setup object itself

– in case the tag name finishes with a number, by
calling a method getTag_<bareName>(nb) on the
setup object

● In all cases, the returned value may be a callable,
in which case, the actual value is the result of
calling it, with the test name as parameter

● The actual value itself may be iterable, in which
case the test will be run once for each value

Sebastien Ponce, Test suite tutorial, October 2009 35/45

Creating new tags
● This can be done by dynamically adding new

getTag_* methods to the Setup class

● The file tags.py inside any resource directory is
dedicated to that (+ environment settings)

● These new methods are immediately available to
compute the new tag values

Sebastien Ponce, Test suite tutorial, October 2009 36/45

Examples of getTag_ methods

Sebastien Ponce, Test suite tutorial, October 2009 37/45

Handling tags in .output files
● Or how to compare output with reference files ?

– Reference output is cut at tags values
● Raw text is compared

– Known tags are compared with existing values

– Unknown tag get a value at first occurrence
● The text before the next piece of reference output

● Special cases

– IgnoreRestOfOutput tag ends the comparison

– Tags named variable* can change value

– Tags listed in randomOrderTags may have there
different values (denoted by indices) randomized
● e.g. <f1> <f2> will also match <f2> <f1>

Sebastien Ponce, Test suite tutorial, October 2009 38/45

The resource mechanism
● Each test can require a set of resources

● The Setup.runTest method will check these by calling
the Setup.checkResources method

● This method

– Recursively gathers all needed resources

● Local <test>.resources file
● Any default.resources file in the hierarchy

– Runs all tests of all resources not yet checked

– Raises an error in case any test is failing

● Note that resources can depend on other resources

● Resources are cached, so that each of them is tested
only once per test suite run

Sebastien Ponce, Test suite tutorial, October 2009 39/45

Command line options
● py.test's command line parsing is done in the

pytest_addoption method

– The underlying parsing is done by optparse

● The castor test suite creates 2 options per subdirectory
of castortests

– --<option> enables these tests

– --no<options> disables them

● Extra options are

– --all / -A runs all tests

– --configfile / -C points to non default config file

– --nocleanup disables file cleanup

– --fail/skipnores overwrites config file default concerning
behavior when a resource is missing

Sebastien Ponce, Test suite tutorial, October 2009 40/45

Configuration file
● Parsed using ConfigParser

– Thus syntax of .ini files
● Sections are :

– Generic : actual suite setup

● directories, service classes, remote servers
● NoCleanup and SkipTestWhenResourceMissing

– Environment : environment variables to be defined
● STAGE_HOST/PORT, STAGER_TRACE,

ROOT/XROOT/GLOBUSSYS

– Tags : harcoded values for tags

● localFileName

Sebastien Ponce, Test suite tutorial, October 2009 41/45

Miscellaneous
● Service classes are checked even if declared as

diskonly or tape in the config file

– Done by writing a file and checking the status

● The subprocess package is used to run commands

– Except if not around (python 2.3), then we popen

– With popen, there is no timeout for a command
● 10 mn timeout with subprocess

● Error messages try to be helpful

– A lot of code is dedicated to that, but it is not yet perfect

● Keyboard interrupts are handled

– See pytest_keyboard_interrupt

– A global gsetup had to be defined, not so nice...

Sebastien Ponce, Test suite tutorial, October 2009 42/45

buildTest.py
● Quite simple script

– Presenting a prompt to the user

– Running any command entered, registering both input
and output of the command

– Parsing input and output to try to find tag values
… and replace them with actual tag names

– Storing the result in .input and .output files

● How tags are found

– Simply using a dictionary of regexps : tagRegexps

– Note that there is no modularity per resource here

● On top, the suppressRegExps list is a list of things to
be ignored and dropped from the output

Sebastien Ponce, Test suite tutorial, October 2009 43/45

Regexps in buildTest.py
● Have a name, a regexp string and a function pointer

– The name is the tag name

– The regexp is the string to match. It must have a single
group, matching the tag value

– If the function is None, simple replacement is done

– Else, the function is called with the tag value and the
whole string matched and should return tag name

Sebastien Ponce, Test suite tutorial, October 2009 44/45

Miscellaneous
● Full history is available for the prompt

– thanks to the readline package

– stored in ~/.castorBuildTestHist for cross sessions
● No automatic completion at the prompt

– we would need shell completion here
● FileNames are mapped to tape or non tape depending

on the fileclass

● Service classes are mapped to diskonly or tape by
asking the user

Sebastien Ponce, Test suite tutorial, October 2009 45/45

Final conclusion

● A small test suite (~600 lines of python)

– Was > 2500 lines of python in previous one

● Still powerful enough for our use

● Easier to use and maintain

– Separation of test code and test cases

– Separation of test cases and syntaxes via tags

– Easy addition of new test cases
● Parallelization of tests remains to be tested

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

