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Outline
● Why to redo the test suite (1 slide)

● User view (12 slides)
– Running the test suite

– Configuring the test suite

– Overview of new features and tests

● Test developer view (11 slides)
– High level : buildTestCase tool

– Lower level : extending tags & resources

● Test suite developer view (19 slides)
– Internals of the test suite

– Internals of buildTestCase
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Why
● To ease creation of new tests

– No need to code to create a test

– Tool provided to create a test from a 
terminal session

● To extend the capabilities of the test suite

– Load balancing and parallelization

– Accurate output parsing and error detection

– Easy configuration
● And checks of resources availability

– Easy selection of tests to be run
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User viewUser view
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Broad view of infrastructure
● Framework based on py.test

– Command line tool

– Collects and runs automated tests

– Part of pylib

● Automatic discovery of tests

– Just go to the top of the test directory

– And run py.test
● Many nice features

– Parallelization and load balancing of tests

– Advanced test selection

– Many running modes

http://codespeak.net/py/dist/test/

http://codespeak.net/py/dist/test/
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How to run the test suite

> cd newtestsuite

> py.test

========= test session starts =======

<...>

test_generic.py sssssssssssssssssssssss

<...>
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How to run the test suite (2)

> py.test –-all

========= test session starts =======

<...>

test_generic.py ......F......

===== 1 failed, 12 passed in 10.s =====
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Selecting tests
● Tests are divided in components

– currently rfio, client, tape, xroot, gridftp, root

● To run a given component use --<component>

● To run all tests, use -A, --all

– --no<component> allows to exclude some

● To further select specific tests

– Use -k KEYWORD
● Only run tests matching the keyword
● Use '-' to negate
● Use ':' to run all subsequent tests

● e.g. py.test –all –noxroot, py.test --rfio -k Rfdir
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Selecting output level
Default

'Verbose' : -v
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Selecting output level (2)
Show activity : -s
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Configuring a run
● Default config file is CastorTestSuite.options

– Can be changed via -C, --configfile

● Got through the file and define

– paths to use
● Inside castor (tape and non tape)
● locally and for remote transfers

– service classes to use

– environment
● STAGER_HOST/PORT/TRACE
● ROOT/XROOT/GLOBUS locations
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What is new ?
● All existing tests have been kept

– Except for the ability to run tape stress testing
● Never used in practice

● New features

– Automatic testing of all possible syntaxes
● e.g. rfio/root/xroot TURLs, xrdcp options

– Checking of resources
● e.g. check status of service classes, 

availability of grid proxy, …
– Automatic cleanup of all temporary files

● in castor and locally
● except if –nocleanup is used
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New tests (Xroot)
● Extended Xroot test suite

– xrdcp fully covered
● On top of root access

– xrd commands tested
● chmod, mkdir, rmdir, stat, rm

– service class specific command tested

● Found a number of small issues

– rm does always drop from NS (already fixed)

– -O options + URL options not supported

– chmod does not respect ow bit (xroot feature)

– xrd config file not fully understood
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New tests (others)

● GridFTP internal tests added

– basic transfer

– SRM like behavior
● with prepareToPut/putDone

– SRM actions are actually simulated by dev tools
● stager_actualget/put

● Tape

– Canceled recall test added

● Client

– Wildcard service class on a put
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Conclusion
● Improved usability

– Better selection of tests

– Improved output (+ several flavours)
● Improved coverage

– More tests

– More strict comparisons

– More types of URLs/options tested
● Already used for 2.1.9-1 certification

Please use it, and report problems/successes
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Test developer viewTest developer view

Note : I would include the operation teams in the test developers from now on
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the buildTestCase tool
● Allows creation of test cases from command line
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What is a test ?

● An input file

● One output file per command

● In both cases, actual values have been 
replaced by 'tags'

– which will be replace by proper values when the 
test suite will be run
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A more complex case
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How are test organized ?
● The tests reside in the 

castortests directory

● Each <s> subdir is a test 
set  and maps to --<s>

● The hierarchy of tests is 
otherwise free

● Considered files are

– *.input, *.output<n>, 
*.resources

– default.resources
● Other files are ignored
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Resources
● What is a resource

– something you need for a given (set of) tests

– e.g. rfio, castor, xroot, remoteRfio

● How to define resource <r>

– create a regular test case testing for <r>

– put it in the resources/<r> directory
● How to declare that a given test needs a resource

– list needed resources in <test>.resources file

– or  group needed resources at any level of the 
test hierarchy in a default.resources file
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Resources practically

● The xroot/root test needs root resource
● On top, all tests within xroot need castor and xroot
● The castor resource consists of 3 tests
● The resource is available only if the 3 tests pass
● Otherwise, tests will fail or will be skipped, 
depending on configuration
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The tag mechanism
● A tag is any string within '<' and '> [+ a number]

– Only character forbidden in a tag is '>'

● A tag in an input file

– Will be replaced by a proper value
● Or n values and test is run n times

– Needs to be known from the test suite

– Can be numbered, will get different values

● A tag in an output file

– will be replaced by its value if known
– Otherwise, matches anything

● The value found is then known for subsequent 
occurrences across the whole test case
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Known tags
● Generic

– tapeFileName, noTapeFileName

– tmpLocalFileName, remoteFileName

– tapeServiceClass, diskOnlyServiceClass

– castorTag
● Resource specific

– Castor : stageHost

– Rfio : rfcp, rfcpupd, rfioTURL

– Root : rootbin, rootRFIOURL, rootCastorURL

– Xroot : xrd, xrdcp, xrdcpURL, xroot(Root)URL

– GridFTP : grid_proxy_info, globus_url_copy
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Defining new tags
● Tags are attached to resources (except generic)

● Defining tags means writing/extending the 
tags.py file of a given resource

– new tags are given value by defining a 
Setup.getTag_<tagName> function

– More details on complex cases in next part
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Conclusion
● buildTest.py is a very handy tool to create tests.

– Please use it extensively and mail the 
.input/.output files to the dev team

– Proper test coverage can only be obtained by 
involving both dev and operation teams 

● Use resources when you need them

– Most standard ones are defined

– Ask for new ones when you need them
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Testsuite developer viewTestsuite developer view

Where the audience drops....
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py.test
● Tool to collect and run automated tests

● In practice :

– looks for test_*.py files in current dir and children

– run all functions with name test_*
● Configuration done in python

– via the conftest.py file at top level
● Test cases are free format python code

– And use assert statement for resulting checking
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funcargs
● Ability to use factory functions for test arguments 

– to parametrize test functions

– to separate test code from test conditions
● Any test argument <a> is considered a funcarg

– py.test calls pytest_funcarg__<a>, passing a 
request object to generate a value

– request gives access to full state of pytest
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Caching funcargs
● A funcarg can return an object instance

● funcargs  can be cached so that the same 
instance is reused for several tests

– e.g. Setup/Config object, DB connections, heavy 
initialization

– a teardown function can be passed (e.g. to close 
DB connection at the end)

– Supported scopes : function, module, session
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Parametrized tests
● Test can be parametrized to run multiple times 

with different values of their arguments

● Output
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The castor generic test
● A single test case is actually implemented

● setup is a funcarg returning a session cached 
object representing the current setup

● The generic test is reused to run all tests of the 
castor test suite, one by one

● Setup is the heart of the test suite, listTests only 
lists the tests present in castortests subdir
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The Setup object
● Interface :

– __init__ : reads config file, sets up environment

– cleanupAndReset : cleans all temporary files 
created (local, remote and in castor)

– runTest : runs a given test
● Skip it or not depending on options
● Check resources
● Parse .input file, replace tag values and run 

all commands
● Compare output with .output files, dealing 

with tag values again
– getTag : gets the value of a given tag
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Handling tags in .input files
● Setup.getTag tries to find a value for the tag

– first in the cache of already used tags

– then in the 'Tags' section of the option file

– else by calling a methog getTag_<name>() on the 
setup object itself

– in case the tag name finishes with a number, by 
calling a method getTag_<bareName>(nb) on the 
setup object

● In all cases, the returned value may be a callable, 
in which case, the actual value is the result of 
calling it, with the test name as parameter

● The actual value itself may be iterable, in which 
case the test will be run once for each value
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Creating new tags
● This can be done by dynamically adding new 

getTag_* methods to the Setup class

● The file tags.py inside any resource directory is 
dedicated to that (+ environment settings)

● These new methods are immediately available to 
compute the new tag values
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Examples of getTag_ methods
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Handling tags in .output files
● Or how to compare output with reference files ?

– Reference output is cut at tags values
● Raw text is compared

– Known tags are compared with existing values

– Unknown tag get a value at first occurrence
● The text before the next piece of reference output

● Special cases

– IgnoreRestOfOutput tag ends the comparison

– Tags named variable* can change value

– Tags listed in randomOrderTags may have there 
different values (denoted by indices) randomized
● e.g. <f1> <f2> will also match <f2> <f1>
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The resource mechanism
● Each test can require a set of resources

● The Setup.runTest method will check these by calling 
the Setup.checkResources method

● This method

– Recursively gathers all needed resources

● Local <test>.resources file
● Any default.resources file in the hierarchy

– Runs all tests of all resources not yet checked

– Raises an error in case any test is failing

● Note that resources can depend on other resources

● Resources are cached, so that each of them is tested 
only once per test suite run



Sebastien Ponce, Test suite tutorial, October 2009 39/45

Command line options
● py.test's command line parsing is done in the 

pytest_addoption method

– The underlying parsing is done by optparse

● The castor test suite creates 2 options per subdirectory 
of castortests

– --<option> enables these tests

– --no<options> disables them

● Extra options are

– --all / -A runs all tests

– --configfile / -C points to non default config file

– --nocleanup disables file cleanup

– --fail/skipnores overwrites config file default concerning 
behavior when a resource is missing
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Configuration file
● Parsed using ConfigParser

– Thus syntax of .ini files
● Sections are :

– Generic : actual suite setup

● directories, service classes, remote servers
● NoCleanup and SkipTestWhenResourceMissing

– Environment : environment variables to be defined
● STAGE_HOST/PORT, STAGER_TRACE, 

ROOT/XROOT/GLOBUSSYS

– Tags : harcoded values for tags

● localFileName
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Miscellaneous
● Service classes are checked even if declared as 

diskonly or tape in the config file

– Done by writing a file and checking the status

● The subprocess package is used to run commands

– Except if not around (python 2.3), then we popen

– With popen, there is no timeout for a command
● 10 mn timeout with subprocess

● Error messages try to be helpful

–  A lot of code is dedicated to that, but it is not yet perfect

● Keyboard interrupts are handled

– See pytest_keyboard_interrupt

– A global gsetup had to be defined, not so nice...
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buildTest.py
● Quite simple script

– Presenting a prompt to the user

– Running any command entered, registering both input 
and output of the command

– Parsing input and output to try to find tag values
… and replace them with actual tag names

– Storing the result in .input and .output files

● How tags are found

– Simply using a dictionary of regexps : tagRegexps

– Note that there is no modularity per resource here

● On top, the suppressRegExps list is a list of things to 
be ignored and dropped from the output
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Regexps in buildTest.py
● Have a name, a regexp string and a function pointer

– The name is the tag name

– The regexp is the string to match. It must have a single 
group, matching the tag value

– If the function is None, simple replacement is done

– Else, the function is called with the tag value and the 
whole string matched and should return tag name
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Miscellaneous
● Full history is available for the prompt

– thanks to the readline package

– stored in ~/.castorBuildTestHist for cross sessions
● No automatic completion at the prompt

– we would need shell completion here
● FileNames are mapped to tape or non tape depending 

on the fileclass

● Service classes are mapped to diskonly or tape by 
asking the user
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Final conclusion

● A small test suite (~600 lines of python)

– Was > 2500 lines of python in previous one

● Still powerful enough for our use

● Easier to use and maintain

– Separation of test code and test cases

– Separation of test cases and syntaxes via tags

– Easy addition of new test cases
● Parallelization of tests remains to be tested
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